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Abstract

In this work, we propose a second-order version and a fourth-order version of a
Cartesian grid-based boundary integral method for an interface problem of the
Laplace equation on closely packed cells. When the cells are closely packed, the
boundary integrals involved in the boundary integral formulation for the interface
problem become nearly singular. Direct evaluation of the boundary integrals has
accuracy issues. The grid-based method evaluates a boundary integral by first solv-
ing an equivalent, simple interface problem on a Cartesian grid with a fast Fourier
transform based Poisson solver, then interpolating the grid solution to get values
of the boundary integral at discretization points of the interface. The grid-based
method presents itself as an alternative but accurate numerical method for evaluat-
ing nearly singular, singular and hyper-singular boundary integrals. This work can
be regarded as a further development of the kernel-free boundary integral method
[W.-J. Ying and C. S. Henriquez, A kernel-free boundary integral method for ellip-
tic boundary value problems, Journal of Computational Physics, Vol. 227 (2007),
pp. 1046-1074] for problems in unbounded domains. Numerical examples with both
second-order and fourth-order versions of the grid-based method are presented to
demonstrate the accuracy of the method.
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Fig. 1. Multi-component interfaces: (a) closely packed cells, (b) illustration of sym-
bols for the interface and subdomains (cells)

1 Introduction

Let Ωi ⊂ R
2 be a bounded open set with smooth boundary, which may have

multiple disconnected components, Ωe = R
2 \ Ω̄i be the unbounded, comple-

mentary domain and Γ be the interface, the common boundary of Ωi and

Ωe. When the interface Γ has multiple components, we write Γ =
K
⋃

k=1
Γk, and

assume each component Γk is a simple closed curve. We call the subdomain
enclosed by each interface component Γk a cell, denoted by Ω

(k)
i .

Let p = (x, y)T ∈ R
2 be a point in space. Suppose Φi(p) and Φe(p) are

two unknown potential functions on Ωi and Ωe, respectively. They satisfy the
Laplace equation

△Φi(p) = 0 in Ωi (1)

and

△Φe(p) = 0 in Ωe. (2)

Let

Φ(p) =











Φi(p) p ∈ Ωi

Φe(p) p ∈ Ωe

.

In general, the function Φ(p) is discontinuous across the interface Γ. Let

Φi(p)− Φe(p) = Vm(p) on Γ, (3)

where Vm(p) will be known. Assume the conductivities σi and σe on Ωi and
Ωe are constant but distinct (σi 6= σe). Let

σi
∂Φi(p)

∂np

− σe
∂Φe(p)

∂np

= Jm(p) on Γ. (4)

2



Here, np is the unit normal vector pointing from the bounded domain Ωi to
the unbounded domain Ωe at point p ∈ Γ; Jm(p) will be known, too. We
assume the potential function Φe(p) satisfies the far field condition

Φe(p) → 0 as |p| =
√

x2 + y2 → ∞. (5)

The interface problem (1)-(5) may describe the electric potential of biological
cells or cardiac myocytes [24,49] in the applications of gene transfection [33,34],
electrochemotherapy of tumors [39] and cardiac defibrillation [4], where the
far-field condition (5) may need to be appropriately modified to model the
stimulation of biological cells by an external electric field.

We focus here on the interface problem of the Laplace equation. But similar
interface problems and computational issues occur in other applications or
for other elliptic partial differential equations. For example, the motion of
many drops of one viscous fluid in another, or the fluid motion of vesicles,
such as blood cells, is often modeled by Stokes flow, leading to a similar
interface problem with many components embedded in a surrounding medium
[35,45,46,53,54].

For the interface problem on closely packed cells, when it is solved by a bound-
ary integral method, evaluation of the involved boundary integrals by the stan-
dard method such as the composite trapezoidal rule has accuracy issues [5]
since the boundary integrals become nearly singular. Special treatment is usu-
ally required for the nearly singular boundary integrals [6,8,9,15–17,23,47,48].

The method that we will present is different from Ying-Beale [48], where the
nearly singularities of boundary integrals on closely packed cells are handled
by kernel regularization and asymptotic analysis. In this work, we follow the
kernel-free boundary integral method [50–52], which is originally motivated
by A. Mayo’s work [29–31]. To evaluate a boundary integral, first we solve
an equivalent interface problem on a larger rectangle/box, which embeds the
interface Γ, with the finite difference method on a Cartesian grid, which covers
the rectangle/box. Then we interpolate the discrete solution on the Cartesian
grid to get values of the boundary integral at discretization points of the
interface. The grid-based method may lead to second-order or fourth-order
accurate numerical solutions, depending on the finite difference scheme and
the interpolation stencil used. The method provides an alternative approach to
accurately evaluating a nearly singular, singular or hyper-singular boundary
integral on closely packed cells.

The grid-based boundary integral method of this work can be regarded as a
further development of the kernel-free boundary integral method. The previous
work on the kernel-free boundary integral method are all for boundary value
or interface problems in bounded domains while this one is proposed for the
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interface problem in the free space, an unbounded domain.

The remainder of the paper is organized as follows. Section 2 describes the
boundary integral equation for the interface problem introduced in Section 1.
Section 3 presents details of different components of the grid-based method for
evaluating boundary integrals. Section 4 summarizes the grid-based boundary
integral method. Section 5 has numerical results by both second-order and
fourth-order versions of the grid-based method. Finally, in Section 6, we discuss
on the advantages of and possible further improvements for the grid-based
boundary integral method.

2 Boundary Integral Equation

We will express the potential function Φ(p) in terms of single and double layer
potentials of the form

v(p) = −
∫

Γ
G(p− q)ψ(q) dsq , w(p) =

∫

Γ

∂G(q− p)

∂nq

ϕ(q) dsq (6)

with some density functions ψ and ϕ. Here, G(p) = (2π)−1 log |p| is the fun-
damental solution of the Laplace equation in R

2 and sq is the arc length
parameter of the interface Γ. Let

v(p) =











vi(p) p ∈ Ωi

ve(p) p ∈ Ωe

and w(p) =











wi(p) p ∈ Ωi

we(p) p ∈ Ωe

.

We recall that the single layer potential v is continuous at Γ but ∂v/∂n has a
jump discontinuity at Γ (e.g., refer to Hsiao-Wendland [21]),























∂vi(p)

∂np

=
1

2
ψ(p)−

∫

Γ

∂G(p− q)

∂np

ψ(q) dsq

∂ve(p)

∂np

= −
1

2
ψ(p)−

∫

Γ

∂G(p− q)

∂np

ψ(q) dsq

; (7)

the double layer potential w has a jump discontinuity at Γ,























wi(p) =
1

2
ϕ(p) +

∫

Γ

∂G(q− p)

∂nq

ϕ(q) dsq

we(p) = −
1

2
ϕ(p) +

∫

Γ

∂G(q− p)

∂nq

ϕ(q) dsq

, (8)

while ∂w/∂n is continuous across Γ (e.g., refer to Hsiao-Wendland [21]). In
this work, we denote by [v] = vi − ve, [w] = wi − we, [∂nv] = ∂nvi − ∂nve and
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[∂nw] = ∂nwi−∂nwe the jumps of the one-side limits of the single, double layer
potentials and their normal derivatives across the interface Γ. In general, by
the square bracket of a piecewise smooth function, we mean its jump across
the interface, the one-side limit of the function on Γ from the interior domain
Ωi subtracted by the one-side limit of the function on Γ from the exterior
domain Ωe.

Now, assuming the solution Φ to the interface problem (1)-(5) exists, let

ψ(p) =
∂Φi(p)

∂np

−
∂Φe(p)

∂np

on Γ. (9)

Then the potential function Φ(p) can be represented as

Φ(p) =
∫

Γ

∂G(q− p)

∂nq

Vm(q) dsq −
∫

Γ
G(p− q)ψ(q) dsq. (10)

According to the properties above, this expression for Φ will have the jumps
prescribed in (3) and (9). The unknown density ψ(p) in (10) is determined by
the interface condition (4).

Let tp = (x′(s), y′(s))T be the unit tangent along the interface, so that the
unit outward normal np = (y′(s),−x′(s))T . From the continuity properties of
the single and double layer potentials and the interface condition (4), we get
the boundary integral equation (refer to Ying-Beale [48])

1

2
ψ(p) + µ

∫

Γ

∂G(p− q)

∂np

ψ(q) dsq = µ
∂

∂np

∫

Γ

∂G(q− p)

∂nq

Vm(q) dsq + m(p)

with µ = (σe − σi)/(σe + σi) ∈ (−1, 1) and m(p) = Jm(p)/(σi + σe). The
integral equation above can be re-written concisely as

1

2
ψ + µM∗ψ = µNVm + m on Γ, (11)

where M∗ and N are the integral operators given by

(M∗ψ)(p) =
∫

Γ

∂G(p− q)

∂np

ψ(q) dsq on Γ,

(Nϕ)(p) =
∂

∂np

∫

Γ

∂G(q− p)

∂nq

ϕ(q) dsq on Γ

for density functions ψ and ϕ defined on the interface.

Integral equations such as (11) are often solved by the biconjugate gradient
method [44, 54] or the generalized minimal residual (GMRES) method [36,
38, 45]. In this work, we solve the integral equation (11) by the Richardson
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iteration. The spectrum of the operator M∗ is contained in the interval −1
2
<

λ ≤ 1
2
(e.g., refer to Kress [25]), and consequently the iteration

ψν+1 = (1− β)ψν + 2β(µNVm + m − µM∗ψn) for ν = 0, 1, 2, · · ·
(12)

converges to the exact solution for 0 < β < 2/(1 + µ).

Let L and M be the single layer and double layer boundary integral operators
given by

(Lψ)(p) =
∫

Γ
G(p− q)ψ(q) dsq,

(Mϕ)(p) =
∫

Γ

∂G(q− p)

∂nq

ϕ(q) dsq

for density functions ψ and ϕ defined on the interface. The solution (10) to
the interface problem can also be concisely re-written as

Φ(p) = MVm − Lψ for p ∈ R
2. (13)

3 Evaluation of Boundary Integrals

As discussed in Section 1, for the interface problem (1)-(5) around multiple
closely packed cells, direct evaluation of the boundary integrals Lψ,Mϕ,M∗ψ
and Nϕ will be inaccurate due to the nearly singularity or hyper-singularity
of the integrals. To accurately evaluate the boundary integrals while avoiding
special treatment for the (nearly) singularity of integrals, we follow the kernel-
free boundary integral method [50–52].

We choose a larger rectangle/box B to properly embed the cells and the inter-
face Γ, assuming the boundary of the box B is sufficiently far away from the
interface Γ, and cover the box B with a uniform Cartesian grid; refer to Fig.
2 for illustration.

To evaluate the single or double layer potential boundary integral, Lψ or Mϕ,
1) first we solve an equivalent interface problem on the Cartesian grid with a
finite difference method; 2) then we interpolate the solution on the Cartesian
grid to get values of the boundary integral at discretization points of the
interface (see the marked rectangles in Fig. 2 (b)).

To evaluate the adjoint double layer potential M∗ψ or the hyper-singular
boundary integralNϕ, we do not interpolate values of the single layer potential
or the double layer potential in step 2 above. Instead, we first compute the first-
order partial derivatives of the interpolant polynomial with the grid solution
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Fig. 2. Three closely packed cells: a) embedded into a larger rectangle/box B; b) on
a Cartesian grid with marked discretization points of the interface Γ

and then get values of the adjoint double layer potential or the hyper-singular
boundary integral by linear combinations of the first-order partial derivatives.

Due to the existence of the complex interface, the discrete interface equations
on the Cartesian grid have to be modified. We correct each linear system by
modifying its right hand side. The correction needs jumps of partial derivatives
of the boundary integral. For the same reason, the polynomial interpolation
encountered also needs jumps of the partial derivatives.

In this section, we will give details of the Cartesian grid-based evaluation
method for boundary integrals on closely packed cells.

3.1 Equivalent interface problems

It is well-known that the single layer potential v(p) = −Lψ(p) satisfies the
interface problem (e.g., refer to Hsiao-Wendland [21])







































△v = 0 in B \ Γ,

[v] = 0 on Γ,

[∂nv] = ψ on Γ,

v = −Lψ on ∂B.
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The double layer potential w(p) = Mϕ(p) satisfies the interface problem







































△w = 0 in B \ Γ,

[w] = ϕ on Γ,

[∂nw] = 0 on Γ,

w = Mϕ on ∂B.

These two interface problems are much simpler to solve than the original
interface problem (1)-(5).

Based on our assumptions on the interface Γ and the larger box B, each
interface problem above has a unique solution for sufficiently smooth density
functions ψ and ϕ. Since the boundary of B is assumed to be sufficiently
far away from Γ, the integrand functions of v(p) = −(Lψ)(p) and w(p) =
(Mϕ)(p) for p on ∂B are regular, smooth functions. We may compute the
Dirichlet boundary conditions for the interface problems by directly evaluating
the boundary integrals. The computation will have no accuracy issues.

In the rest of this section, we consider the unified interface problem below







































△u = 0 in B \ Γ,

[u] = ϕ on Γ,

[∂nu] = ψ on Γ,

u = Mϕ− Lψ on ∂B.

(14)

Its solution is u(p) = (Mϕ)(p)− (Lψ)(p).

3.2 Discretization of the PDE on a Cartesian grid

Assume the larger rectangle/box B = (a, b) × (c, d) is chosen so that it can
be partitioned into a uniform I × J Cartesian grid with h = (b − a)/I =
(d − c)/J > 0. Here, I and J are two positive integers. For i = 0, 1, · · · , I
and j = 0, 1, · · · , J , let xi = a+ ih and yj = c+ jh be the coordinates of the
vertical and horizontal grid lines, respectively. Denote by pi,j = (xi, yj)

T the
(i, j)th node of the Cartesian grid.

We may discretize the Laplace equation of the interface problem (14) by either
the standard five-point finite difference scheme or the standard nine-point
compact finite difference scheme [27,40].

Let ui,j be a finite difference approximation of u(pi,j) or u(xi, yj) at the (i, j)
th
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grid node pi,j . The five-point finite difference equation reads

△(5)
h ui,j ≡

1

h2

{

−4ui, j + (ui+1, j + ui, j+1 + ui−1, j + ui, j−1)

}

= 0. (15)

The nine-point finite difference equation reads

△(9)
h ui,j ≡

1

h2

{

−
10

3
ui,j +

2

3
(ui+1, j + ui, j+1 + ui−1, j + ui, j−1)

+
1

6
(ui+1, j+1 + ui−1, j+1 + ui−1, j−1 + ui+1, j−1)

}

= 0. (16)

Note that ui,j is known for i = 0, I or j = 0, J by the Dirichlet boundary
condition u = Mϕ−Lψ on ∂B. Either finite difference discretization yields a
linear system for (I − 1)× (J − 1) unknowns, whose coefficient matrix can be
inverted by a fast Poisson solver [10, 11, 19,20,41].

3.3 Correction of the discrete linear system

We know that, if there is no interface Γ for the Laplace equation, given suf-
ficiently smooth Dirichlet boundary data, the five-point finite difference dis-
cretization (15) produces second-order accurate numerical solution and the
nine-point finite difference discretization (16) yields fourth-order accurate nu-
merical solution [27,40]. However, due to the existence of the complex interface
Γ, straightforward finite difference discretization of the Laplace equation usu-
ally has very large local truncation errors at some nodes of the Cartesian grid
and produces inaccurate numerical solution. To get a numerical solution with
the formal order of accuracy, appropriate correction is needed at those grid
nodes.

One point that we shall keep in mind during the correction is that, in order
that we can still be able to invert the modified linear system with a fast
Poisson solver, we should avoid modifying the coefficient matrix and instead
only change the right hand side of the linear system.

We classify the grid nodes {pi,j} as interior, exterior, regular and irregular
nodes. We call a node pi,j an interior grid node if it lies inside one of the cells

{Ω(k)
i }Kk=1; otherwise, we call a node pi,j an exterior grid node.

We identify a grid node pi,j as a regular grid node if the nodes involved with the
finite difference stencil at pi,j are all in the exterior domain Ωe or all in the same

cell Ω
(k)
i for some k ∈ {1, 2, · · · , K}; otherwise, we call a node pi,j an irregular

grid node. It is obvious that the classification of regular and irregular grid
nodes depends on the finite difference scheme; refer to Fig. 3 for three closely

9



(a) (b)

Fig. 3. Three closely packed cells on a Cartesian grid with irregular nodes marked:
a) classification of irregular nodes by the five-point finite difference discretization;
b) classification of irregular nodes by the nine-point compact finite difference dis-
cretization

packed cells on a 16× 16 Cartesian grid with irregular nodes classified by the
five-point and nine-point different finite difference discretizations. A regular
grid node with the five-point finite difference discretization is not necessarily
also a regular grid node with the nine-point compact finite difference method.
An irregular grid node with the nine-point compact finite difference scheme is
not necessarily also an irregular grid node with the five-point finite difference
method.

In this work, we assume that the Cartesian grid is fine enough so that, for the
finite difference stencil at an irregular grid node pi,j , any line segment that
connects pi,j with another point in the stencil intersects the interface at most
twice.

At a regular grid node, the five-point finite difference discretization has a
second-order local truncation error while the nine-point finite difference dis-
cretization has a fourth-order local truncation error. At an irregular grid node,
both the five-point and the nine-point finite difference discretizations may in-
troduce large local truncation errors on the order of O(h−2). We will estimate
the local truncation errors at irregular grid nodes.

For the solution u(p) = u(x, y) to the simple interface problem (14), denote

by u(k)(x, y) its restriction on Ω
(k)
i for k = 1, 2, · · · , K, and by u(0)(x, y) its

restriction on the exterior domain Ωe. That is, we have

u(x, y) =

{

u(k)(x, y) if (x, y)T ∈ Ω
(k)
i ,

u(0)(x, y) if (x, y)T ∈ Ωe.
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In particular, in the finite difference equations (15) and (16), the discrete value

ui,j is an approximation of u(k)(xi, yj) if (xi, yj)
T ∈ Ω

(k)
i or an approximation

of u(0)(xi, yj) if (xi, yj)
T ∈ Ωe.

To help compute local truncation errors at irregular grid nodes, we assume the
functions u(k)(x, y), for k = 0, 1, · · · , K, have smooth extensions in the whole
box B. As a matter of fact, it suffices to assume that each function u(k)(x, y)
has a smooth extension to the other side in a neighborhood of the interface Γk.
Here, Γ0 ≡ Γ. For simplicity, in the next, we do not use different symbols for a
function u(k)(x, y) and its extension. In other words, we assume u(k)(x, y) is a
smooth function defined on B and coincides with u(x, y) in the kth cell/ellipse

Ω
(k)
i for k > 0 or the exterior domain Ωe for k = 0.

We write the five-point finite difference equation (15) and the nine-point com-
pact finite difference equation (16) in a unified formulation

∑

r,s

a(r,s)ui+r,j+s = 0. (17)

Here, the subscripts r, s = −1, 0 or 1. Assume a(0,0) = −4/h2 for the five-point
finite difference scheme and a(0,0) = −10/(3h2) for the nine-point compact
finite difference scheme. Note that the non-zero coefficients {a(r,s)} are all on
the order of O(h−2).

At a grid node pi,j = (xi, yj)
T ∈ Ω

(k)
i for k ∈ { 1, 2, · · · , K } or pi,j = (xi, yj)

T ∈
Ωe for k = 0, by our assumption on the function u(k)(x, y) and its extension,
we have

∑

r,s

a(r,s)u(k)(xi+r, yj+s) =

{

O(h2) for the five-point scheme,

O(h4) for the nine-point scheme.
(18)

Now we replace ui+r,j+s with u(xi+r, yj+s) in the summation on the left hand
side of (17). If pi,j is a regular grid node, the new summation after the re-
placement is on the order of h2 or h4 as (18). If pi,j is an irregular grid node,
the new summation is O(h−2) and not negligible. We denote the summation
by

Ei,j =
∑

r,s

a(r,s)u(xi+r, yj+s). (19)

Next we subtract the right hand side of (19) by the summation on the left
hand side of (18). This yields

Ei,j =
∑

|r|+|s|6=0

a(r,s)
{

u(xi+r, yj+s)− u(k)(xi+r, yj+s)
}

+O(hp), (20)

where p = 2 for the five-point finite difference scheme and p = 4 for the nine-
point finite difference scheme. In the summation above, we exclude the case
r = s = 0 since u(xi, yj) = u(k)(xi, yj) then.
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Let

D
(r,s)
i,j = u(xi+r, yj+s)−u

(k)(xi+r, yj+s) = u(ℓ)(xi+r, yj+s)−u
(k)(xi+r, yj+s) (21)

with 1 ≤ ℓ ≤ K if (xi+r, yj+s)
T ∈ Ω

(ℓ)
i and ℓ = 0 if (xi+r, yj+s)

T ∈ Ωe.

In the case that the line segment that connects the points pi,j and pi+r,j+s

does not intersect the interface Γ, we have ℓ = k and D
(r,s)
i,j = 0. In the case

that the line segment that connects the points pi,j and pi+r,j+s intersects the
interface Γ at one and exactly one point, one of the points must be in the
exterior domain Ωe and we have ℓ = 0 6= k or k = 0 6= ℓ. In the case that the
line segment that connects the points pi,j and pi+r,j+s intersects the interface
at two points (see Fig. 4), which are on two different components Γk and Γℓ,
we have ℓ > 0 and k > 0. For the third case, we may decompose the difference
D

(r,s)
i,j as a sum of two parts

u(ℓ)(xi+r, yj+s)− u(k)(xi+r, yj+s) =
{

u(ℓ)(xi+r, yj+s)− u(0)(xi+r, yj+s)
}

+
{

u(0)(xi+r, yj+s)− u(k)(xi+r, yj+s)
}

.

Here, we remark that we do not consider the case that the line segment which
connects the points pi,j and pi+r,j+s intersects a single interface component
Γk at two different points (For the interface problem (1)-(5) of our interest,
we may assume any such two intersected points on Γk can be connected by a
short path that completely lies in Ω

(k)
i . This assumption implies the difference

(21) in this case is negligible by the smoothness of u(k)(x, y)). Now we show
that Ei,j can be approximated by a weighted sum of the differences of the
form

{

u(k)(xi+r, yj+s)− u(0)(xi+r, yj+s)
}

(22)

with k > 0. Assume the line segment that connects the points pi,j and pi+r,j+s

intersects the interface segment Γk at point qk. Let (ξ, η)
T ≡ pi+r,j+s − qk.

We make local Taylor series expansions around the intersection point qk for
both functions u(k)(x, y) and u(0)(x, y), which gives us

u(k)(xi+r, yj+s) = u+ +

{

u+x ξ + u+y η

}

+
1

2

{

u+xxξ
2 + 2u+xyξη + u+yyη

2

}

+
1

6

{

u+xxxξ
3 + 3u+xxyξ

2η + 3u+xyyξη
2 + η3u+yyy

}

+
1

24

{

u+xxxxξ
4 + 4u+xxxyξ

3η + 6u+xxyyξ
2η2

+4u+xyyyξη
3 + η4u+yyyy

}

+O(h5) (23)
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qk

qℓ

Γk

Γℓ

pi,j

pi+r,j+s

Fig. 4. A line segment that intersects two cells Ω
(k)
i and Ω

(ℓ)
i

and

u(0)(xi+r, yj+s) = u− +

{

u−x ξ + u−y η

}

+
1

2

{

u−xxξ
2 + 2u−xyξη + u−yyη

2

}

+
1

6

{

u−xxxξ
3 + 3u−xxyξ

2η + 3u−xyyξη
2 + η3u−yyy

}

+
1

24

{

u−xxxxξ
4 + 4u−xxxyξ

3η + 6u−xxyyξ
2η2

+4u−xyyyξη
3 + η4u−yyyy

}

+O(h5). (24)

Here, the values of the functions and their partial derivatives on the right
hand sides of the Taylor expansions above are all evaluated at the intersection
point qk and coincide with those of the solution function u(x, y) and its cor-
responding partial derivatives; the superscripts, “+” and “-”, mean the values
are one-side limits of the functions, respectively, from the interior and exterior
domains. Moreover, subtracting (23) by (24) yields

u(k)(xi+r, yj+s)− u(0)(xi+r, yj+s)

= [u] +

{

[ux]ξ + [uy]η

}

+
1

2

{

[uxx]ξ
2 + 2[uxy]ξη + [uyy]η

2

}

+
1

6

{

[uxxx]ξ
3 + 3[uxxy]ξ

2η + 3[uxyy]ξη
2 + η3[uyyy]

}

+
1

24

{

[uxxxx]ξ
4 + 4[uxxxy]ξ

3η + 6[uxxyy]ξ
2η2

+4[uxyyy]ξη
3 + η4[uyyyy]

}

+O(h5). (25)

The quantities with the square brackets on the right hand side of the expan-
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sion above are jumps of the piecewise smooth function u(x, y) and its partial
derivatives across the interface Γ at the point qk.

After replacing the difference (22) in Ei,j by the fourth-order local Taylor series
expansion (25) and truncating high order terms, we denote the resulting sum

by C
(9)
i,j , which is a third-order O(h3) approximation to Ei,j , i.e.,

Ei,j = C
(9)
i,j +O(h3).

Here, the fact that the coefficients {a(r,s)} in (19) are on the order of h−2 is

used. The quantity C
(9)
i,j is readily computable once the jumps of u(x, y) and its

partial derivatives (up to the fourth-order) are known. As a matter of fact, the
jumps of the partial derivatives can be calculated from the interface conditions
and the Laplace equation in (14). Details of the calculation are presented in
Subsection 3.5.

We know that the computable quantity C
(9)
i,j is for the fourth-order nine-point

compact finite difference scheme. For the five-point finite difference scheme, it
is enough to replace the difference (22) in Ei,j by the second-order local Taylor
series expansion

u(k)(xi+r, yj+s)− u(0)(xi+r, yj+s)

= [u] + ([ux]ξ + [uy]η) +

{

1

2
[uxx]ξ

2 + [uxy]ξη +
1

2
[uyy]η

2

}

+O(h3). (26)

We denote the resulting sum by C
(5)
i,j after replacing the differences in the

form of (22) in Ei,j by the second-order local Taylor series expansion (26) and

truncating high order terms. The computable quantity C
(5)
i,j is a first-order

O(h) approximation to Ei,j, i.e.,

Ei,j = C
(5)
i,j +O(h).

With the linear combinations C
(5)
i,j and C

(9)
i,j of truncated Taylor expansions, we

modify the finite difference equation by the five-point scheme at an irregular
grid node to be

∑

r,s

a(r,s)ui+r,j+s = C
(5)
i,j ; (27)

and modify the finite difference equation by the nine-point compact scheme
at an irregular grid node to be

∑

r,s

a(r,s)ui+r,j+s = C
(9)
i,j . (28)

The modified five-point finite difference equation (27) at an irregular grid node
has a local truncation error on the order of h while the modified nine-point

14
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Fig. 5. Interpolation stencils: a) for the quadratic interpolation; b) for the quartic
interpolation

finite difference equation (28) at an irregular grid node has a local truncation
error on the order of h3.

For both the five-point and the nine-point schemes, since the modification
for the finite difference equations at irregular grid nodes does not change the
coefficient matrix from the standard one, the corrected linear system can still
be efficiently solved with a fast Poisson solver [20, 41].

3.4 Interpolation for integral values on the interface

By the kernel-free boundary integral method [50–52], after the grid solution
ui,j is obtained by solving the modified finite difference system, we need to
compute approximations of the corresponding boundary integral (for the sin-
gle and double layer potentials) or its first-order partial derivatives (for the
adjoint double layer potential and the hyper-singular boundary integrals) at
discretization points of the interface by a two-variable Lagrange polynomial
interpolation (refer to [12, 13] for a survey on and the history of multivariate
polynomial interpolation).

With the grid solution ui,j computed by the five-point finite difference scheme,
we make a quadratic interpolation, assuming the interpolant has the form

f2(x, y) = c1 + (c2x+ c3y) + (c4x
2 + c5xy + c6y

2). (29)

To determine the coefficients {cν}
6
ν=1, we need a six-point interpolation stencil

as illustrated by Fig. 5 (a).

With the grid solution ui,j computed by the nine-point finite difference scheme,
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we make a quartic interpolation, assuming the interpolant has the form

f4(x, y) = c1 + (c2x+ c3y) + (c4x
2 + c5xy + c6y

2) + (c7x
3 + c8x

2y + c9xy
2 + c10y

3)

+ (c11x
4 + c12x

3y + c13x
2y2 + c14xy

3 + c15y
4), (30)

To determine the coefficients {cν}
15
ν=1, we need a fifteen-point interpolation

stencil as illustrated by Fig. 5 (b).

Fig. 6 shows the first few Lagrange interpolation stencils (of polynomial degree
up to six) for computing values in the shaded region, which is at the lower-left
corner of a grid element/cell, with discrete data at the grid nodes.
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Fig. 6. Stencils for two-variable Lagrange interpolation in the shaded region, which
is at the lower-left corner of a grid cell

In Fig. 6, the grid nodes in different interpolation stencils from low to high are
labeled orderly by integer numbers. The stencil of linear interpolation consists
of the first three points (labeled from 1 to 3) and has the “2-1” pattern. The
stencil of quadratic interpolation consists of the first six points (labeled from 1
to 6) and has the “1-3-2” pattern. The stencil of cubic interpolation consists of
the first ten points (labeled from 1 to 10) and has the “2-4-3-1” pattern. The
stencil of quartic interpolation consists of the first fifteen points (labeled from
1 to 15) and has the “1-3-5-4-2” pattern. The stencil of quintic interpolation
consists of the first twenty-one (labeled from 1 to 21) points and has the “2-4-
6-5-3-1” pattern. Other interpolation stencil has either the “1-3-5-· · · -6-4-2”
pattern or the “2-4-6-· · · -5-3-1” pattern. By the “1-3-5-· · · -6-4-2” pattern, we
mean the first column from left to right in the interpolation stencil has 1 grid

16



node, the second column has 3 grid nodes, the third column has 5 grid nodes
and the last three columns have 6, 4, 2 grid nodes, respectively.

Fig. 7. Stencils for the two-variable Lagrange interpolation at points on the other
three shaded regions in a grid cell

The interpolation stencils for points at the other three regions in a grid cell
can be obtained by rotation or reflection from those shown in Fig. 6. They are
illustrated in Fig. 7.

For the grid solution ui,j to the simple interface problem (14), due to the dis-
continuity of the solution or/and its partial derivatives across the interface Γ,
the two-variable polynomial interpolation need correction/modification, too.
Similarly, we also do not want to modify the interpolation stencil or change
the coefficient matrix of the resulting linear system and instead only adjust
the discrete data at the grid nodes.

In the next, we only discuss on the correction for the quartic interpolation with
(30). The correction for the quadratic interpolation with (29) is completely
analogous.

Let qk be a point on the boundary Γk of the kth cell. Suppose we want to
approximate the limit value at qk of the extended function u(k)(x, y), which

17



coincides with the solution u(x, y) on Ω
(k)
i . We expect the interpolation poly-

nomial f4(x, y) satisfies

f4(xi+rν , yj+sν ) ≈ u(k)(xi+rν , yj+sν ) for ν = 1, 2, · · · , 15, (31)

where { (xi+rν , yj+sν ) }
15
ν=1 are the points in the interpolation stencil used.

At an interpolation point (xi+rν , yj+sν ) that is also inside Ω
(k)
i , we simply

replace u(k)(xi+rν , yj+sν ) in (31) by ui+rν ,j+sν , which gives us

f4(xi+rν , yj+sν ) = ui+rν ,j+sν . (32)

At an interpolation point (xi+rν , yj+sν ) that is inside Ω
(ℓ)
i with 0 < ℓ 6= k, we re-

place u(k)(xi+rν , yj+sν ) in (31) by ui+rν ,j+sν+
{

u(k)(xi+rν , yj+sν )− u(ℓ)(xi+rν , yj+sν )
}

,
which gives us

f4(xi+rν , yj+sν ) = ui+rν ,j+sν +
{

u(k)(xi+rν , yj+sν )− u(ℓ)(xi+rν , yj+sν )
}

. (33)

At an interpolation point (xi+rν , yj+sν ) that is in the exterior domain Ωe, we

replace u(k)(xi+rν , yj+sν ) by ui+rν ,j+sν +
{

u(k)(xi+rν , yj+sν )− u(0)(xi+rν , yj+sν )
}

,
which gives us

f4(xi+rν , yj+sν ) = ui+rν ,j+sν +
{

u(k)(xi+rν , yj+sν )− u(0)(xi+rν , yj+sν )
}

. (34)

As before, we replace the difference on the right hand side of (33) by

{

u(k)(xi+rν , yj+sν )− u(ℓ)(xi+rν , yj+sν )
}

=
{

u(k)(xi+rν , yj+sν )− u(0)(xi+rν , yj+sν )
}

+
{

u(0)(xi+rν , yj+sν )− u(ℓ)(xi+rν , yj+sν )
}

.

Now we also see that the right hand sides of (33)-(34) can be computed in
terms of the differences of the form (22).

Moreover, we may further replace the differences by the corresponding fifth-
order accurate local Taylor series expansions, and get the coefficients {cν}

15
ν=1

of the interpolation polynomial f4(x, y) by solving the resulting linear system.

Finally, we remark that the quartic interpolation and the fifth-order local
Taylor series expansions are for the nine-point finite difference scheme. As
we did before in [50, 52], for the five-point finite difference scheme, it suffices
that we work with the quadratic polynomial interpolation and the third-order
local Taylor series expansions for computing the corresponding differences of
the form (22).

In the computation for the local Taylor series expansions, we need jumps of
the solution and its partial derivatives, too. Details of the calculation for the
jumps are presented in the next subsection.
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3.5 Calculation for jumps of partial derivatives

In this section, we will derive equations for calculating jumps of the solution
u(x, y) to the simple interface problem (14) and its partial derivatives up to
the fourth-order.

Let s be an arc length parameter of the interface Γ. Denote a point on the
interface by p = (x(s), y(s))T . Differentiating the first interface condition in
(14) with respect to the arc length parameter s, together with the second
interface condition in (14), we get











x′(s)[ux] + y′(s)[uy] = ϕs,

y′(s)[ux]− x′(s)[uy] = ψ.
(35)

Solving this two by two linear system gives us jumps of the first-order partial
derivatives of u on Γ.

Differentiating the identities in (35) with respect to the arc length parameter
s, respectively, together with the Laplace equation that the solution u(x, y)
satisfies, we get



























(x′)2[uxx] + 2x′y′[uxy] + (y′)2[uyy] = ϕss −
{

x′′(s)[ux] + y′′(s)[uy]
}

,

x′y′[uxx] +
{

(y′)2 − (x′)2
}

[uxy]− x′y′[uyy] = ψs − y′′[ux] + x′′[uy],

[uxx] + [uyy] = 0.

(36)
Solving this three by three linear system gives us jumps of the second-order
partial derivatives of u on Γ.

Differentiating the first equation in (36) with respect to the arc length param-
eter s gives us

(x′)3[uxxx] + 3(x′)2y′[uxxy] + 3x′(y′)2[uxyy] + (y′)3[uyyy] = r3,1 (37)

with

r3,1 = ϕsss − (x′′′[ux] + y′′′[uy])− 3
{

x′′x′[uxx] + (x′′y′ + x′y′′)[uxy] + y′′y′[uyy]
}

.

Differentiating the second equation in (36) with respect to the arc length
parameter s gives us

(x′)2y′[uxxx]+
{

2x′(y′)2−(x′)3
}

[uxxy]+
{

(y′)3−2(x′)2y′
}

[uxyy]−x
′(y′)2[uyyy] = r3,2

(38)
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with

r3,2 = ψss−y
′′′[ux]+x

′′′[uy]−(x′′y′+2x′y′′)[uxx]+3(x′x′′−y′y′′)[uxy]+(2x′′y′+x′y′′)[uyy].

We may get two more equations for jumps of the third-order partial derivatives
by first differentiating the Laplace equation and then taking jumps of the
resulting equations across Γ. They read

[uxxx] + [uxyy] = 0, (39)

[uxxy] + [uyyy] = 0. (40)

We may get jumps of the third-order partial derivatives, [uxxx], [uxxy], [uxyy]
and [uyyy], by solving the system consisting of Eqns. (37)-(40).

Differentiating (37) with respect to the arc length parameter s yields

(x′)4[uxxxx]+4(x′)3y′[uxxxy]+6(x′)2(y′)2[uxxyy]+4x′(y′)3[uxyyy+(y′)4[uyyyy] = r4,1
(41)

with

r4,1 = ϕssss − (x′′′′[ux] + y′′′′[uy])

−
{

(4x′′′x′ + 3x′′x′′)[uxx] + (4x′′′y′ + 6x′′y′′ + 4x′y′′′)[uxy] + (4y′′′y′ + 3(y′′)2)[uyy]
}

− 6
{

x′′(x′)2[uxxx] + (2x′x′′y′ + (x′)2y′′)[uxxy] + (x′′(y′)2 + 2x′y′y′′)[uxyy] + y′′(y′)2[uyyy]
}

.

Differentiating (38) with respect to the arc length parameter s leads to

(x′)3y′[uxxxx] + (x′)2
{

3(y′)2 − (x′)2
}

[uxxxy] + 3x′y′
{

(y′)2 − (x′)2
}

[uxxyy]

+ (y′)2
{

(y′)2 − 3(x′)2
}

[uxyyy]− x′(y′)3[uyyyy] = r4,2

(42)

with

r4,2 = ψsss − y′′′′[ux] + x′′′′[uy]− (x′′′y′ + 3x′′y′′ + 3x′y′′′)[uxx]

+ (3x′′x′′ + 4x′x′′′ − 3y′′y′′ − 4y′y′′′)[uxy] + (3x′′′y′ + 3x′′y′′ + x′y′′′)[uyy]

−3
{

x′x′′y′ + (x′)2y′′
}

[uxxx] + 3
{

2(x′)2x′′ − x′′(y′)2 − 3x′y′y′′
}

[uxxy]

−3
{

2(y′)2y′′ − 3x′x′′y′ − (x′)2y′′
}

[uxyy] + 3
{

x′′(y′)2 + x′y′y′′
}

[uyyy].

Other three equations for jumps of the fourth-order partial derivatives read

[uxxxx] + [uxxyy] = 0, (43)

[uxxxy] + [uxyyy] = 0, (44)

[uxxyy] + [uyyyy] = 0, (45)
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which are similarly obtained by first differentiating the Laplace equation and
then taking jumps of the resulting equations across Γ.

We may get jumps of the fourth-order partial derivatives, [uxxxx], [uxxxy],
[uxxyy], [uxyyy] and [uyyyy], by solving the system consisting of Eqns. (41)-(45).

4 Algorithm Summary

Setup: 1) discretize the interface Γ by a set of quasi-uniformly spaced points;
2) partition the rectangle/box B into a uniform Cartesian grid and identity
interior and irregular grid nodes; 3) for each five-point or nine-point finite
difference stencil at the irregular grid nodes, find all intersection points of the
interface with the line segments that connect the corresponding irregular grid
node with other points in the stencil.

Iteration of the boundary integral equation: 1) choose an initial guess for
the discrete unknown density of the boundary integral equation; 2) evaluate
the boundary integral by the Cartesian grid-based method; 3) update the
discrete unknown density by the Richardson iteration, which may be replaced
with a Krylov subspace method [37]; 4) repeat the previous steps until the
discrete residual of the boundary integral equation is sufficiently small in some
norm.

Evaluation of a boundary integral: 1) first we correct the right hand side
of the discrete interface equations at irregular grid nodes; 2) compute the
Dirichlet data on the boundary of the bounding box by directly evaluating
the boundary integrals on the interface with the composite trapezoidal rule
at discretization points of the interface; 3) next we solve the modified linear
system by a fast Fourier transform (precisely fast sine transform) based solver;
4) then we get approximate values of the boundary integral at discretization
points of the interface by the two-variable Lagrange interpolation with the
data on the Cartesian grid.

Steps 1) and 4) in the evaluation of boundary integrals above both involve
calculation for jumps of partial derivatives. In the calculation for jumps of
partial derivatives, the tangential differentiation of the densities of the single
layer and double layer boundary integrals is done numerically by the Lagrange
interpolation with the discrete data at discretization points of the interface.

Classification of irregular grid nodes and each step in the grid-based evaluation
for boundary integrals depend on the finite difference scheme used.
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5 Numerical Results

In this section, we present numerical examples for the interface problem (1)-(5)
with the boundary integral method proposed in this work.

In all examples, the interface Γ consists of multiple ellipses, some of which are
closely packed. For k = 1, 2, · · · , K, we represent the kth ellipse by







x(k)

y(k)





 =







ck,x

ck,y





+







cosαk − sinαk

sinαk cosαk













ak cos θ

bk sin θ





 for θ ∈ [0, 2π),

where (ck,x, ck,y)
T is the center of the ellipse, ak and bk are the major and minor

axis radii, αk is the rotation angle of the ellipse from the standard one whose
axes are aligned with the coordinate lines. We choose conductivity parameters
σi = 1 and σe = 3 for the interface problem. The interface data Vm(p) and
Jm(p) are selected so that the exact solution to the interface problem (1)-(5)
reads

Φi(p) = Φi(x, y) = x in Ωi

Φe(p) = Φe(x, y) =
K
∑

k=1

ck,x − x

(ck,x − x)2 + (ck,y − y)2
in Ωe.

The bounding box B of the simple interface problem (14), which is formulated
for evaluating boundary integrals, is set to be B = [−1.5, 1.5] × [−1.5, 1.5].
In addition to partitioning the bounding box B into a uniform I × J Carte-
sian grid, we also divide each interface component Γk into M pieces with the
discretization points {(x(k)m , y(k)m )}Mm=1 given by







x(k)m

y(k)m





 =







ck,x

ck,y





+







cosαk − sinαk

sinαk cosαk













ak cos θm

bk sin θm







for θm = 2πm/M , m = 1, 2, · · · ,M . The Dirichlet boundary condition u(p) =
(Mϕ)(p)− (Lψ)(p) on ∂B are computed by directly evaluating the boundary
integrals with the composite trapezoidal rule on the discretization points of the
interface, {(x(k)m , y(k)m )}Mm=1 for k = 1, 2, · · · , K. The finite difference equations
on the Cartesian grid for the simple interface problem (14), whose right hand
sides are modified/corrected at irregular grid nodes as described in Subsection
3.3, are all inverted with fast Fourier transform based Poisson solvers [20].

In the calculation for jumps of partial derivatives, the numerical differentia-
tion of densities ϕ and ψ, whose values are known only at the discretization
points {(x(k)m , y(k)m )}Mm=1 for k = 1, 2, · · · , K, is done by a local cubic or quartic
Lagrange interpolation when the simple interface problem (14) is respectively
discretized with the five-point or nine-point finite difference scheme. With the
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five-point finite difference scheme, the local cubic Lagrange interpolation for
the numerical differentiation can be replaced with a quadratic Lagrange in-
terpolation, which will not degrade the global second-order accuracy of the
numerical solution to the interface problem (1)-(5).

The parameter for the Richardson iteration is fixed to be β = 1.4/(1 + µ). In
each run, the unknown density for the Richardson iteration is initialized with
zero and the iteration is terminated when the discrete maximum norm of the
residual is less than the tolerance ǫ = 10−10.

The Cartesian grid-based boundary integral method proposed in this work
was implemented in custom codes written in the C/C++ computer language.
The numerical experiments were performed in double precision on a MacBook
Pro laptop computer with a 2.5GHz Intel Core i7 CPU for Examples 1-3 and
on a desktop computer with Intel(R) Xeon(R) 2.8GHz CPU for Examples 4-6.

Finally, we remark that, in our implementation, the correction for the right
hand side of the discrete interface equations, the interpolation for integral val-
ues on the interface with the grid data, and the calculation for the jumps of
partial derivatives are slightly different from what is described in this paper.
For example, the local Taylor series expansions (25) and (26) for differences of
the form (21) are not necessarily made around the intersection points (some-
times it is more convenient to make the local Taylor series expansions around
the interpolation points or other points nearby the intersection points); the
interpolant polynomials for integral values on the interface are in practice func-
tions of a pair of two scaled and translated variables rather than the original
independent variables x and y. But these deviations are not essential.

In each table of numerical results in this section, the first row shows the sizes
of the uniform Cartesian grids for the bounding box B, the second row shows
the numbers of discretization points on each interface component (ellipse), the
third row has the numbers of Richardson iterations and the fourth and fifth
rows, respectively, show the discrete maximum interior and exterior errors of
the numerical solution at the grid nodes. The last row shows the CPU times
(in seconds) used by the computer.

Example 1. The interface in this example consists of three closely packed
ellipses, K = 3. The centers, radii and rotation angles (in degrees) of the
ellipses are listed in Table 1. The distances between the ellipses are 4.79×10−4,
4.79×10−4 and 3.22×10−4, respectively. Fig. 8 shows isolines of the numerical
potential Φ(p) on a uniform 512 × 512 Cartesian grid. Numerical results are
summarized in Tables 2-3.

Example 2. The interface in this example is the union of a circle centered at
the origin and a circular layer of five ellipses, which are identical up to rotation;
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Table 1
Three ellipses of Example 1: center (ck,x, ck,y), major axis ak, minor axis bk and
rotation angle αk (in degrees)

k ck,x ck,y ak bk αk

1 0 0.35 0.65 0.38 90◦

2 −0.6 −0.4 0.653 0.4 −30◦

3 0.6 −0.4 0.653 0.4 30◦

Fig. 8. Isolines plot of the potential (Example 1)

Table 2
Numerical results of Example 1 by the second-order method

grid size 64× 64 128× 128 256× 256 512× 512 1024× 1024

M 32 64 128 256 512

#Richardson 30 30 32 32 32

‖einth ‖∞ 2.02E-2 3.54E-3 2.47E-4 6.46E-5 6.65E-6

‖eexth ‖∞ 1.34E-2 3.00E-3 2.65E-4 7.80E-5 1.09E-5

CPU (secs) 5.47E-2 1.76E-1 7.05E-1 2.74E+0 1.14E+1

refer to Fig. 9. The radii of the cells are chosen such that any two neighboring
ellipses are almost in touch with a distance less than 10−4. We generate the
cells in the following way. First we put five identical ellipses (up to rotation)
around the circle centered at the origin with radius equal to 0.4. We assume
the centers of the five surrounding cells are evenly spaced and at a distance
of 0.7 away from the origin. We choose the radii of the ellipses so that all of
the cells are initially in touch with each other. To get the final configuration
for the computation, we further multiply the radii of the cells by a number
very close to one, which is ρ = 0.9999. Fig. 9 shows isolines of the numerical
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Table 3
Numerical results of Example 1 by the fourth-order method

grid size 64× 64 128× 128 256× 256 512× 512 1024× 1024

M 32 64 128 256 512

#Richardson 31 31 32 32 32

‖einth ‖∞ 1.92E-3 4.31E-4 9.71E-6 2.58E-7 1.27E-8

‖eexth ‖∞ 2.79E-3 2.13E-4 8.05E-6 2.33E-7 1.34E-8

CPU (secs) 1.32E-1 3.64E-1 1.21E+0 4.37E+0 1.73E+1

Fig. 9. Isolines plot of the potential (Example 2)

potential Φ(p) on a uniform 512 × 512 Cartesian grid. Numerical results are
summarized in Tables 4-5. Table 4 has the results by the second-order version
of the grid-based boundary integral method. Table 5 has the results by the
fourth-order version of the grid-based boundary integral method.

Table 4
Numerical results of Example 2 by the second-order method

grid size 64× 64 128× 128 256× 256 512× 512 1024× 1024

M 32 64 128 256 512

#Richardson 30 30 32 32 33

‖einth ‖∞ 3.56E-2 8.13E-3 1.04E-3 1.61E-4 2.37E-5

‖eexth ‖∞ 4.83E-2 8.28E-3 1.05E-3 1.62E-4 2.38E-5

CPU (secs) 9.26E-2 2.82E-1 1.05E+0 3.96E+0 1.65E+1

Example 3. The interface in this example is the union of a circle centered
at the origin and a circular layer of nine ellipses, which are identical up to
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Table 5
Numerical results of Example 2 by the fourth-order method

grid size 64× 64 128× 128 256× 256 512× 512 1024× 1024

M 32 64 128 256 512

#Richardson 36 33 31 33 33

‖einth ‖∞ 7.91E-3 9.50E-4 4.36E-5 1.63E-6 3.24E-8

‖eexth ‖∞ 8.41E-3 3.75E-4 3.77E-5 1.41E-6 2.30E-8

CPU (secs) 2.73E-1 6.16E-1 1.71E+0 6.17E+0 2.34E+1

Fig. 10. Isolines plot of the potential (Example 3)

rotation; refer to Fig. 10. The cells are generated in the same way as the
previous example. The circle in the middle is also centered at the origin with
radius equal to 0.4. The centers of the surrounding ellipses are also evenly
spaced and at a distance of 0.8 away from the origin. The distance of two
neighboring cells is also less than 10−4. Fig. 10 shows isolines of the numerical
potential Φ(p) on a uniform 512 × 512 Cartesian grid. Numerical results are
summarized in Tables 6-7. Table 6 has the results by the second-order version
of the grid-based boundary integral method. Table 7 has the results by the
fourth-order version of the grid-based boundary integral method.

Example 4. The interface in this example is the union of two circular layers
of cells (see Fig. 11), each of which is a circle and has the same radius. The
radii of the cells are chosen such that all cells are located inside the unit circle
centered at the origin. The cells in the outer layer are almost in touch with
the unit circle. Two adjacent cells in the same circular layer have a distance
less than 10−4. Fig. 11 shows isolines of a numerical potential Φ(p) for the
interface problem. Numerical results are summarized in Tables 8-9. Table 8
has the results by the second-order version of the grid-based boundary integral
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Table 6
Numerical results of Example 3 by the second-order method

grid size 64× 64 128× 128 256× 256 512× 512 1024× 1024

M 32 64 128 256 512

#Richardson 31 32 32 33 34

‖einth ‖∞ 8.25E-2 1.14E-2 1.61E-3 1.60E-4 6.16E-5

‖eexth ‖∞ 7.60E-2 1.20E-2 1.80E-3 1.88E-4 6.31E-5

CPU (secs) 1.46E-1 4.44E-1 1.53E+0 5.88E+0 2.40E+1

Table 7
Numerical results of Example 3 by the fourth-order method

grid size 64× 64 128× 128 256× 256 512× 512 1024× 1024

M 32 64 128 256 512

#Richardson 34 34 34 34 34

‖einth ‖∞ 8.74E-3 5.26E-4 4.25E-5 1.11E-6 6.26E-8

‖eexth ‖∞ 8.78E-3 4.91E-4 4.64E-5 1.24E-6 6.80E-8

CPU (secs) 4.04E-1 9.46E-1 2.62E+0 8.62E+0 3.17E+1

Fig. 11. Isolines plot of the potential (Example 4)

method. Table 9 has the results by the fourth-order version of the grid-based
boundary integral method.

Example 5. The interface in this example is the union of a few circular
layers of cells (see Fig. 12), each of which is an ellipse. The cells in each layer
are identical up to rotation. The radii of ellipses in the direction pointing
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Table 8
Numerical results of Example 4 by the second-order method

grid size 128× 128 256× 256 512× 512 1024× 1024 2048× 2048

M 32 64 128 256 512

#Richardson 32 33 33 34 35

‖einth ‖∞ 5.81E-2 1.03E-2 3.31E-3 2.95E-4 7.28E-5

‖eexth ‖∞ 6.09E-2 1.07E-2 3.41E-3 3.65E-4 9.25E-5

CPU (secs) 1.02E+0 3.90E+0 1.52E+1 6.22E+1 2.59E+2

Table 9
Numerical results of Example 4 by the fourth-order method

grid size 128× 128 256× 256 512× 512 1024× 1024 2048× 2048

M 32 64 128 256 512

#Richardson 32 32 34 34 35

‖einth ‖∞ 1.16E-2 7.79E-4 3.05E-5 1.50E-6 7.89E-8

‖eexth ‖∞ 9.91E-3 7.51E-4 2.85E-5 1.51E-6 8.22E-8

CPU (secs) 1.55E+0 4.96E+0 1.86E+1 7.06E+1 2.87E+2

to the center are all the same as the radius of the circle in the middle of
the configuration. The radii of the cells are chosen such that all cells are
located inside the unit circle centered at the origin and any two adjacent
cells in a circular layer are almost in touch with a distance less than 10−4.
Fig. 12 shows isolines of a numerical potential Φ(p) for the interface problem.
Numerical results are summarized in Tables 10-11. Table 10 has the results by
the second-order version of the grid-based boundary integral method. Table 11
has the results by the fourth-order version of the grid-based boundary integral
method.

Table 10
Numerical results of Example 5 (37 cells) by the second-order method

grid size 512× 512 1024× 1024 2048× 2048 4096× 4096

M 32 64 128 256

#Richardson 32 33 33 33

‖einth ‖∞ 3.74E-2 2.81E-3 4.04E-4 7.33E-5

‖eexth ‖∞ 4.26E-2 3.00E-3 4.09E-4 7.69E-5

CPU (secs) 7.53E+0 3.07E+1 1.24E+2 5.01E+2
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Fig. 12. Isolines plot of the potential (Example 5)

Table 11
Numerical results of Example 5 (37 cells) by the fourth-order method

grid size 512× 512 1024× 1024 2048× 2048 4096× 4096

M 32 64 128 256

#Richardson 35 34 34 34

‖einth ‖∞ 7.13E-3 5.89E-4 1.71E-5 9.04E-7

‖eexth ‖∞ 4.26E-3 5.66E-4 1.79E-5 7.77E-7

CPU (secs) 1.11E+1 3.99E+1 1.56E+2 6.48E+2

Example 6. The interface in this example is the union of a circular layer of
uniform cells and a set of randomly generated cells, which are enclosed by the
circular layer of cells; refer to Fig. 13. All of the cells are contained inside the
unit circle centered at the origin. They are generated in the same way as those
in the previous examples. We first generate cells some of which are right in
touch with each other and then multiply the radii of the cells by 0.9999. The
cells on the outer circular layers are almost in touch with the unit circle by
a distance less than 10−4. As before, the distances between those cells which
are very close to each other are less than 10−4, too. Fig. 13 shows isolines of
a numerical potential Φ(p) for the interface problem. Numerical results are
summarized in Tables 12-13. Table 12 has the results by the second-order
version of the grid-based boundary integral method. Table 13 has the results
by the fourth-order version of the grid-based boundary integral method.

The simulation corresponding to the plot in Fig. 13 has 48 cells/ellipses. The
minimum and maximum radii of the cells are about 0.0828 and 0.1369, re-
spectively. The minimum and maximum aspect ratios of the ellipses are about
0.6048 and 0.9478, respectively.
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Fig. 13. Isolines plot of the potential (Example 6)

Table 12
Numerical results of Example 6 (48 cells) by the second-order method

grid size 512× 512 1024× 1024 2048× 2048 4096× 4096

M 32 64 128 256

#Richardson 36 35 35 36

‖einth ‖∞ 2.31E-1 2.47E-2 3.60E-3 2.51E-4

‖eexth ‖∞ 1.97E-1 2.13E-2 3.46E-3 2.69E-4

CPU (secs) 1.01E+1 3.91E+1 1.58E+2 6.54E+2

Table 13
Numerical results of Example 6 (48 cells) by the fourth-order method

grid size 512× 512 1024× 1024 2048× 2048 4096× 4096

M 32 64 128 256

#Richardson 38 35 36 36

‖einth ‖∞ 8.73E-2 3.54E-3 2.81E-4 9.72E-6

‖eexth ‖∞ 5.52E-2 2.80E-3 2.70E-4 9.42E-6

CPU (secs) 1.40E+1 4.82E+1 1.93E+2 7.89E+2

All numerical results for Examples 1-6 show that both second-order and fourth-
order versions of the grid-based boundary integral method for the interface
problem (1)-(5) generate solutions with the desired order of accuracy. The
numerical results also show the grid-based boundary integral method is stable
and efficient in the sense that the number of the Richardson iterations used is
essentially independent of the grid sizes for each example. The computational
work involved with the method is essentially linearly proportional to the num-
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ber of nodes in the underlying Cartesian grid as indicated by the CPU times
that the computer takes, which scale linearly with the number of grid nodes.

6 Discussion

In this work, we have presented a second-order version and a fourth-order
version of a Cartesian grid-based boundary integral method for the interface
problem (1)-(5) of the Laplace equation on closely packed cells. When the cells
are closely packed, the boundary integrals involved with the boundary integral
formulation for the interface problem become nearly singular. It is hard to get
accurate values of the boundary integrals by a standard evaluation method
such as the composite trapezoidal rule, which otherwise has super-algebraic
convergence in accuracy [25]. The grid-based boundary integral method pro-
posed in this work avoids direct evaluation of the nearly singular, singular and
hyper-singular boundary integrals.

The second-order version of the method works with the five-point finite differ-
ence discretization as well as a quadratic two-variable Lagrange interpolation.
The fourth-order version of the method works with the nine-point compact
finite difference discretization as well as a quartic two-variable Lagrange in-
terpolation. With both versions of the method, the discrete finite difference
equations, whose right hand sides at irregular grid nodes are corrected, are
solved with a fast Fourier transform based Poisson solver.

The computational work involved with the Cartesian grid-based boundary in-
tegral method for the interface problem (1)-(5) is essentially linearly propor-
tional to the number of nodes on the Cartesian grid that is used to solve the
equivalent interface problem (14). Nevertheless, the efficiency of the method
for the interface problem (1)-(5) may be further improved after it is combined
with a local and adaptive mesh refinement algorithm as well as a simple, fast
summation technique for computing the Dirichlet boundary condition for the
simple interface problem (14). This improvement will be studied and reported
separately.

The method presented in this work is not kernel-free since the computation
of the Dirichlet boundary condition on the boundary of the bounding box
for the simple interface problem (14) needs to know and work with the fun-
damental solution of the Laplace equation in the free space. However, this
method can be regarded as an extension of the kernel-free boundary integral
method [50–52]. The kernel-free boundary integral method was proposed for
solving boundary value and interface problems in bounded domains [50–52]
while the current one is proposed for the interface problem (1)-(5) in the free
space. The methodology should be applicable for solving exterior boundary
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value problems of the Laplace equation or other elliptic partial differential
equation as long as the fundamental solution of the PDE in the free space is
known.

The grid-based boundary integral method can be readily extended for the in-
terface problem or other exterior boundary value problems on closely packed
cells in three space dimensions. It may have advantages for modeling multi-
component flows, multiphase materials and evolution of microstructures [1–3,
7, 14, 18, 22,26,28,32,42,43].
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