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Abstract

This paper presents a class of one-step multi-stage backward differentiation formu-
las (BDFs), called composite BDFs or C-BDFs, as a generalization of the TR-BDF2
composite scheme. These schemes are equivalent to singly diagonally implicit Runge-
Kutta (SDIRK) methods of special type, and regarded as the one-step analogs of the
multi-step Gear’s methods, the so-called backward differentiation formulas (BDFs).
Unlike the standard BDFs, however, the C-BDFs do not need external startup cal-
culation while maintaining the full accuracy of the scheme. The C-BDF can be easily
implemented as it is made up of the simplest Forward Euler and Backward Euler
processes, which are interleaved with interpolation and extrapolation operations on
intermediate solutions.
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1 Introduction

Many problems in biology can be described by systems of ordinary differen-
tial equations [16, 20, 21]. These problems are often multiscale and stiff and
hence are amenable to implicit solvers, given their better stability properties.
While a variety of implicit solvers have been developed [7, 8, 13, 14, 23,24, 26],
many computational biologists avoid their use, as they appear algorithmically
complex.

One can view standard time integration methods as falling into one of three
families, assuming that those based on Richardson extrapolation [10] and
deferred correction techniques [11, 18], including the classic Picard iteration
method, are classified as advanced or non-standard methods. The first family
of methods are the one-step multi-stage Runge-Kutta methods [6], which are
based on numerical integration of derivative functions. The linearly implicit
methods, named Rosenbrock-Wanner methods [13], can also be interpreted as
one step, multi-stage Runge-Kutta methods. The second family of methods are
the multi-step Adams methods [13,17], which were originally derived from nu-
merical integration of derivative-interpolating polynomials. The Adams meth-
ods can be treated as the multi-step analogs of the one-step Runge-Kutta
methods and vice versa. Unlike the Runge-Kutta and Adams methods, the
third family of methods, popularly called as multi-step Gear’s methods or
backward differentiation formulas (BDFs) [12,25], are based on numerical dif-
ferentiation of solution-interpolating polynomials. All the methods have high
order extensions.

While this classification is somewhat arbitrary, there are currently no standard
methods that can be viewed as high-order one-step analog of the multi-step
Gear’s methods (see Table 1). In this paper, we show that if properly con-
structed, composite implicit methods, such as TR-BDF2 [4,15], can be viewed
as one-step, multi-stage methods. For example, by replacing the trapezoidal
part in the TR-BDF2 scheme with the second-order implicit midpoint rule,
another composite scheme, which we call IM-BDF2, can be derived with the
same A- and L-stabilities as TR-BDF2. IM-BDF2 is a one-step, two-stage
method. We show that IM-BDF2 can be extended to a one-step multi-stage
scheme, where each stage uses a backward differentiation formula, BDFq. Here,
the BDFq scheme is analogous to the standard BDF with q-steps. We there-
fore call the one-step multi-stage BDF scheme the composite BDF or C-BDF
method.

In this paper, we present IM-BDF2 scheme for the first time and relate it to
TR-BDF2. The stability properties of the two methods are analyzed and com-
pared with a second-order singly diagonally implicit Runge-Kutta (SDIRK2)
scheme. We then derive the generalized one-step multi-stage composite back-
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Table 1
Time integration methods for initial value problems

derivative-interpolating solution-interpolating

one-step methods Runge-Kutta ?

multi-step methods Adams Gear

ward differentiation formulas and show that the C-BDFs are equivalent to
a special type of one step, multi-stage Runge-Kutta schemes. Finally, we dis-
cuss how the C-BDFs provide a computational elegance since certain elements
of the algorithm can be reused and only the solutions and not the function
derivatives at the intermediate time steps need to be stored.

The remainder of the paper is organized as follows. In section 2, we briefly
summarize the TR-BDF2 scheme and the IM-BDF2 scheme, the latter of
which has never been seen in the same form in the literature to the best of our
knowledge. In section 3, two variants of the TR-BDF2 and IM-BDF2 schemes
and their stability properties are analyzed and compared with a second-order
singly diagonally implicit Runge-Kutta (SDIRK2) scheme. In section 4, we
present the generalized one-step multi-stage composite backward differentia-
tion formulas. In section 5, we show that the C-BDFs are equivalent to the
special type Runge-Kutta schemes.

2 The Second-order TR-BDF2 and IM-BDF2 Schemes

Assume f(u) is a sufficiently smooth nonlinear function of u. We consider nu-
merically integrating the following autonomous ordinary differential equation
(ODE),

du

dt
= f(u), (1)

from time tn to tn+1 = tn +∆t. The extension of the work to non-autonomous
ODEs is standard and straightforward.

Let γ > 0 be a characteristic value, called as a stability constant, and let

γ2 ≡
1− 2γ

2(1− γ)
.

Our discussion starts with the following two composite schemes:

3



• The trapezoidal and BDF2 composite scheme (TR-BDF2),

un+2γ − γ∆t f(un+2γ) = un + γ∆t f(un), (2a)

un+1 − γ2∆t f(un+1) =
1− γ2

2γ
un+2γ +

(
1− 1− γ2

2γ

)
un. (2b)

• The implicit midpoint and BDF2 composite scheme (IM-BDF2),

un+γ − γ∆t f(un+γ) = un, (3a)

un+1 − γ2∆t f(un+1) =
1− γ2

γ
un+γ +

(
1− 1− γ2

γ

)
un. (3b)

The TR-BDF2 scheme (2) was originally derived as a composite method of
the trapezoidal rule and the backward-differentiation-formula of second-order
(BDF2) [4]. The IM-BDF2 scheme (3) results from the replacement of the
trapezoidal stage (2a) in the TR-BDF scheme with the implicit midpoint
rule. Both the TR-BDF2 scheme (2) and the IM-BDF2 scheme (3) are of
second-order in accuracy for any γ 6= 0, 1.

For the special value γ = 1/2, the TR-BDF2 scheme (2) degenerates to the
trapezoidal rule; the IM-BDF2 scheme (3) becomes

un+1/2 − 1

2
∆tf(un+1/2) = un,

un+1 = 2un+1/2 − un,

which is exactly the implicit midpoint rule,

un+1 −∆tf(
un + un+1

2
) = un.

The leading order term of the local truncation error of the TR-BDF2 scheme
(2) is given by

ETR-BDF2 =

{
1

6
− 2γ2 − 2γ + 1

4(1− γ)

}
(f ′

2
f + f 2f ′′) ∆t3

=

{
1

6
− 2γ2 − 2γ + 1

4(1− γ)

}
u′′′(tn) ∆t3. (5)

The leading order term of the local truncation error of the IM-BDF2 scheme
(3) is given by

EIM-BDF2 =

{
1

6
− 2γ2 − 2γ + 1

4(1− γ)

}
f ′2f ∆t3 +

{
1

6
− 1− γ

4

}
f 2f ′′∆t3 (6)
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Let C(γ) be the coefficient of the leading-order error ETR-BDF2 of the TR-BDF2
scheme. It is easy to find that

C(γ) =
2

3
− 1

4

{
2(1− γ) +

1

1− γ

}
∈
(
−∞,

2

3
−
√

2

2

]
∪
[
2

3
+

√
2

2
,∞

)
. (7)

The specific value

γ = 1−
√

2

2
minimizes |C(γ)|. Later we will see that this value also makes identical the
Jacobian matrices from both the trapezoidal/implicit midpoint rule and the
BDF2 stages in (2)/(3) and the schemes be both A- and L-stable.

When the characteristic value γ takes the value that minimizes |C(γ)|, the
leading-order errors from the TR-BDF2 and IM-BDF2 schemes are respec-
tively

ETR-BDF2 ≈ −0.0404 (f ′
2
f + f 2f ′′)∆t3 (8)

and

EIM-BDF2 ≈ −0.0404 (f ′
2
f +

1

4
f 2f ′′)∆t3. (9)

3 Two Variants of The TR-BDF2 and IM-BDF2 Schemes

In this section, we will restrict ourselves to two variants of the two-stage TR-
BDF2 and IM-BDF2 schemes, (2) and (3). In each variant, both stages use
the identical time integration parameter γ and so involve the same Jacobian
matrices.

• A variant of the TR-BDF2 scheme (2) reads:

un+2γ − γ∆t f(un+2γ) = un + γ∆t f(un), (10a)

un+1 − γ∆t f(un+1) =

(
1

2γ
− 1

2

)
un+2γ +

(
3

2
− 1

2γ

)
un. (10b)

• A variant of the IM-BDF2 scheme (3) reads:

un+γ − γ∆t f(un+γ) = un, (11a)

un+1 − γ∆t f(un+1) =

(
1

γ
− 1

)
un+γ +

(
2− 1

γ

)
un. (11b)

Both of the modified TR-BDF2 scheme (10) and the modified IM-BDF2
scheme (11) above are of second-order in accuracy if and only if γ = 1±

√
2/2,
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the zeros of the quadratic polynomial

P2(γ) ≡ γ2 − 2γ +
1

2
. (12)

The TR-BDF2 and IM-BDF2 schemes, (10) and (11), have the same stability
function, for general γ > 0,

Sγ(z) =
1 + (1− 2γ)z

(1− γz)2
for z ∈ C. (13)

It can be shown [27] that the modified schemes above are both A-Stable and
L-Stable for γ = 1±

√
2/2.

Remark 1 As a comparison with the second-order TR-BDF2 and IM-BDF2
schemes, (10) and (11), we describe here a singly diagonally implicit Runge-
Kutta (SDIRK2) scheme [9,13],

un+1 = un +
∆t

2

(
k1 + k2

)
(14)

with

k1 = f(un + γ∆t k1),

k2 = f(un + (1− 2γ)∆t k1 + γ∆t k2).

The corresponding stability function Sγ(z) of the SDIRK2 scheme (14) is given
by

Sγ(z) =
1 + (1− 2γ)z + (γ2 − 2γ + 1/2)z2

(1− γz)2
.

The leading order term in the local truncation error for the SDIRK2 scheme
(14) is given by

ESDIRK2 =
{

1

6
− γ(1− γ)

}
f ′

2
f ∆t3 +

{
1

6
− 2γ2 − 2γ + 1

4

}
f 2f ′′ ∆t3.

The SDIRK2 scheme is both A- and L-stable if and only if

γ = 1±
√

2

2
. (15)

When the characteristic value γ = 1−
√

2/2, the leading-order error from the
SDIRK2 scheme is

ESDIRK2 ≈ −0.0404 (f ′
2
f − 1

2
f 2f ′′)∆t3. (16)
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4 The Composite Backward Differentiation Formulas

Now we present the generalization of the second-order composite schemes,
(10) and (11), and collectively call the generalized schemes as composite back-
ward differentiation formulas (C-BDFs, also mnemonic for the “counterpart
of BDFs” or “closed BDFs” since they are BDFs but do not need external
startup calculation).

Let q > 0 be the number of stages, γ > 0 be the characteristic constant, {θi} be
the temporal parameters and the coefficients {βi,j} to be determined. Assume
w0 = un ≈ u(tn), wi ≈ u(tn + θi∆t) (for i = 1, 2, · · · , q) and un+1 = wq.

• A q-stage TR-BDFs scheme is in the following form:

w1 − γ∆t f(w1) = w0 + γ∆t f(w0), (17a)

wi − γ∆t f(wi) =
i−1∑
j=0

βi,jwj for i = 2, 3, · · · , q. (17b)

• A q-stage IM-BDFs scheme is in the following form:

w1 − γ∆t f(w1) = w0, (18a)

wi − γ∆t f(wi) =
i−1∑
j=0

βi,jwj for i = 2, 3, · · · , q. (18b)

For simplicity, we only restrict our discussion to the IM-BDFs scheme (18),
which also reads

wi − γ∆t f(wi) =
i−1∑
j=0

βi,jwj for i = 1, 2, · · · , q. (19)

We could determine the values of γ, {θi} and {βi,j} by the method of unde-
termined coefficients as usual through imposing consistency condition, which
yields

i−1∑
j=0

βi,j = 1, (20)

and order conditions.

Let vi = wi − w0 (i = 1, 2, · · · , p). We have the following Taylor expansions
around w0:

f(wi) =
p−1∑
k=0

1

k!
f (k)(w0)v

k
i + O(vp

i ),
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and

v1 = γ∆t
p−1∑
k=0

1

k!
f (k)(w0)v

k
1 + O(γ∆t vp

1), (21a)

vi =
i−1∑
j=1

βi,jvj + γ∆t
p−1∑
k=0

1

k!
f (k)(w0)v

k
i + O(γ∆t vp

i ) for i > 1. (21b)

In general, it becomes extremely involved to explicitly write down order con-
ditions in terms of the characteristic value γ and the coefficients {βi,j} as the
order number p increases. We postpone the computation of the coefficients for
general p > 3 until the next section. In the rest of this section, we only find
the coefficients βi,j for the third-order scheme (p = 3). For conciseness, denote
the kth-order derivative f (k)(w0) of f(w) at w0 simply by f (k); and f ′ = f (1),
f ′′ = f (2), f ′′′ = f (3).

First of all, note that

v1 = γ ∆t f + γv1 ∆tf ′ +
1

2
γv2

1 ∆tf ′′ + · · · , (22)

v2 = γ(1 + β2,1) ∆tf + γ(v2 + β2,1v1) ∆tf ′ +
1

2
γ(v2

2 + β2,1v
2
1) ∆tf ′′ + · · · , (23)

and

v3 = γ

[
1 + β3,1 + β3,2(1 + β2,1)

]
∆tf

+ γ

[
v3 + β3,1v1 + β3,2(v2 + β2,1v1)

]
∆tf ′

+
1

2
γ

[
v2

3 + β3,1v
2
1 + β3,2(v

2
2 + β2,1v

2
1)

]
∆tf ′′ + · · · . (24)

Equating the coefficients of low-order terms of v3 with those in a Taylor ex-
pansion of the exact solution u(t) around tn gives us the following identities:

∆tf : 1 = γ

[
1 + β3,1 + β3,2(1 + β2,1)

]
, (25a)

∆t2ff ′ :
1

2
= γ

{
1 + β3,1γ + β3,2

[
(1 + β2,1)γ + β2,1γ

]}
, (25b)

∆t3f(f ′)2 :
1

6
= γ

{
1

2
+ β3,1γ

2 + β3,2

[
γ
[
γ(1 + β2,1) + β2,1γ

]
+ β2,1γ

2

]}
,

(25c)

∆t3f 2f ′′ :
1

6
=

1

2
γ

{
1 + β3,1γ

2 + β3,2

[
(1 + β2,1)

2γ2 + β2,1γ
2

]}
. (25d)
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From (25a)-(25b), we get

γ + γ(1− γ) + β3,2β2,1γ
2 =

1

2
. (26)

From (25c)-(25d), we get

1

2
+ β3,2β2,1β2,1γ

2 =
1

6γ
. (27)

Let
ζ = β3,2β2,1. (28)

Equation (25a) can be rewritten as

(β3,1 + β3,2) + ζ =
1

γ
− 1. (29)

Equation (25c) can be written as

(β3,1 + β3,2) + 3ζ =
1

γ2
(

1

6γ
− 1

2
) (30)

Subtracting (29) from (30) gives us

ζ =
1

2

[
1

γ2
(

1

6γ
− 1

2
) + 1− 1

γ

]
. (31)

Note, from (26), we have another expression for ζ,

ζ =
1

γ2

[
1

2
− 2γ + γ2

]
. (32)

Combining (31) and (32) yields a nonlinear equation for γ,

1

2

[
1

γ2
(

1

6γ
− 1

2
) + 1− 1

γ

]
=

1

γ2

[
1

2
− 2γ + γ2

]
, (33)

or the cubic equation

P3(γ) ≡ γ3 − 3γ2 +
3

2
γ − 1

6
= 0, (34)

which has three distinct real roots:

γ0 = 1 +
√

2 cos
ϕ

3
,

γ1 = 1 +
√

2 cos
ϕ + 2π

3
,

γ2 = 1 +
√

2 cos
ϕ + 4π

3
,

9



Table 2
Coefficients for the third-order three-stage IM-BDFs scheme (19).

Coefficient Value

γ 0.158983899989

β2,0 - 1.644972541469

β2,1 2.644972541469

β3,0 3.911869324372

β3,1 - 6.012776528027

β3,2 3.100907203655

Coefficient Value

γ 0.435866521508

β2,0 0.352859819861

β2,1 0.647140180139

β3,0 -1.250979895058

β3,1 3.729329662446

β3,2 -1.478349767388

with

ϕ = arctan

√
2

4
.

After γ has been determined, back-substituting it into (32) and (27) gives us
the values of ζ,

β2,1 =
1

ζγ2

(
1

6γ
− 1

2

)
, (35)

β3,2 = ζ/β2,1, β3,1 = 1/γ − 1− ζ − β3,2, and so on. See Table 2 for two sets of
parameters, which correspond to the cases when γ < 1.

Before closing this section, we will work on the stabilities of the general C-
BDF schemes and the existence of the corresponding characteristic constant
γ.

Let w = (w1, w2, · · · , wq)
T ∈ Rq and

L =



0

β2,1 0

β3,1 β3,2 0

β4,1 β4,2 β4,3
. . .

...
...

...
. . . 0

βq,1 βq,2 βq,3 · · · βq,q−1 0


∈ Rq×q. (36)

Let eq = (0, · · · , 0, 1)T ∈ Rq and e = (1, 1, · · · , 1)q ∈ Rq and I ∈ Rq×q be the
identity matrix. When applied to time integration of the simple linear ODE,

du(t)

dt
= λ u(t) with λ ∈ C and Re(λ) < 0 (37)

from tn to tn+1 = tn + ∆t, the q-stage IM-BDFs scheme (19) leads to the
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following linear system

(1− γz)w = (I− L)ew0 + Lw, (38)

or

w = [(1− γz)I− L]−1(I− L) ew0, (39)

with z = λ∆t. Note that w0 = un ≈ u(tn) and un+1 = wq ≈ u(tn+1). So,

wq = eT
q w = eT

q [(1− γz)I− L]−1(I− L)ew0. (40)

The stability function S(z) of the q-stage IM-BDFs scheme (19) is given by

Sγ(z) = eT
q [(1− γz)I− L]−1(I− L) e. (41)

Note that the determinant of the matrix [(1− γz)I−L] is equal to (1− γz)q.
By Cramer’s rule, the stability function S(z) is a rational polynomial in the
form

Sγ(z) =
Q(γz)

(1− γz)q
= c0 + c1(γz) + · · ·+ cp(γz)p + O((γz)p+1), (42)

where the polynomial Q(γz) in the numerator has a degree not greater than
(q − 1). As γ 6= 0, it is obvious that

Sγ(∞) = 0. (43)

So, if the scheme is A-stable, it must be L-stable.

If the IM-BDFs scheme (19) is of pth-order in accuracy, the characteristic value
γ and the coefficients βi,j must satisfy

Sγ(z)− ez = c0 + c1(γz) + · · ·+ cp(γz)p + O((γz)p+1)− ez = O(zp+1), (44)

i.e.,

c0 + c1(γz) + c2(γz)2 + · · ·+ cp(γz)p −
p∑

k=0

1

k!
zk = 0, (45)

with constants {ck}p
k=0 dependent of {βi,j}. The identity (45) is true for any

z ∈ C. So we must have

ckγ
k =

1

k!
for k = 0, 1, · · · , p. (46)

Next we assume the polynomial Q(γz) in the numerator of (42) is in the form

Q(γz) = a0 + a1(γz) + a2(γz)2 + · · ·+ aq−1(γz)q−1. (47)
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As

Q(γz) = (1− γz)p Sγ(z)

= (1− γz)p

{ p∑
k=0

ck(γz)k + O((γz)p+1)

}

=
p∑

k=0

(
p

k

)
(−γz)k

{ p∑
k=0

ck(γz)k + O((γz)p+1)

}
, (48)

the coefficient ai of the ith-order term in the polynomial Q(γz) can be com-
puted by

ai = γ−i
i∑

k=0

(
p

i− k

)
(−γ)i−kckγ

k =
i∑

k=0

(
p

i− k

)
(−1)i−kγ−k 1

k!

for i = 0, 1, · · · . Recall that the polynomial Q(γz) has a degree less than q = p,
i.e., ap = 0. This implies that the characteristic value γ must satisfy

0 = ap =
p∑

k=0

(
p

p− k

)
(−1)p−kγ−k 1

k!
. (49)

or γ is a root of the following polynomial of degree n = p,

Pn(γ) =
n∑

k=0

(−1)k

(
n

k

)
1

k!
γn−k. (50)

The first a few polynomials (p ≤ 4) are given by

P1(γ) = γ − 1,

P2(γ) = γ2 − 2γ +
1

2
,

P3(γ) = γ3 − 3γ2 +
3

2
γ − 1

6
,

P4(γ) = γ4 − 4γ3 + 3γ2 − 2

3
γ +

1

24
.

Note that the polynomial defined by

Ln(ξ) = ξnPn(
1

ξ
) =

n∑
k=0

(−1)k

(
n

k

)
1

k!
ξk (52)

is a Laguerre polynomial of degree n. The Laguerre polynomials {Ln(ξ)}∞n=0

are orthogonal with weight e−ξ on the interval [0,∞). The Laguerre polynomial
of degree n has n distinct positive real roots [19]. So, the polynomial (50) must
have n distinct roots too.
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5 Equivalence between C-BDFs and SDIRK Schemes

In this section, we will see that the IM-BDFs scheme is equivalent to a Radau-
type singly diagonally implicit Runge-Kutta (SDIRK) scheme even for general
nonlinear ODEs [2, 15, 22]. In the Butcher tableau for a Radau-type SDIRK
scheme (see Table 3), the vector bT is equal to the last row of the coefficient
matrix A [6].

Table 3
A Butcher tableau

c A

bT

We consider the following special SDIRK scheme, which is of Radau-type:

wi = w0 + ∆t
i∑

j=1

αi,jf(wj) for i = 1, 2, · · · , q, (53)

with A = (αi,j)q×q, α1,1 = α2,2 = · · · = αq,q = γ. and αi,j = 0 if j > i.
We assume that wi ≈ u(tn + θi∆t) with 0 = θ0 < θ1 < θ2 < · · · < θq = 1.
Let w = (w1, w2, · · · , wq)

T , and let fj ≡ f(wj) and f = (f1, f2, · · · , fq)
T . The

SDIRK scheme (53) can be rewritten as

w = w0 e + ∆tAf . (54)

So,

f =
1

∆t
A−1(w − w0 e). (55)

For simplicity, the (i, j)th entry in the inverse A−1 is denoted by 1
γ
α∗i,j. Then

we have

fi =
1

γ∆t

i∑
j=1

α∗i,j(wj − w0) for i = 1, 2, · · · , q. (56)

The SDIRK scheme (53) can be reformulated as

wi − γ∆tf(wi) = w0 + ∆t
i−1∑
j=1

fj = w0 +
1

γ

i−1∑
j=1

αi,j

j∑
k=1

α∗j,k(wk − w0) =
i−1∑
j=0

βi,jwj,

with

βi,j =
i∑

`=j

αi,` α∗`,j.

Similarly, we can show that the multi-stage TR-BDFs scheme (17) is equivalent
to a (semi-explicit) Lobatto-type SDIRK scheme, where the last row of the
coefficient matrix A in its Butcher tableau (see Table 3) is the same as the
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vector bT and the first row of A is zero. The equivalence between the original
second-order TR-BDF2 scheme (2) and a SDIRK scheme was first reported
by Hosea and Shampine [15]. Based on the equivalence between the C-BDF
schemes and the special type-SDIRK schemes, the existence and stabilities
of the C-BDF schemes are guaranteed as long as the corresponding Radau-
type or Lobatto-type SDIRK schemes exist and are A-, B-, L- or S-stable,
etc. [1–3, 5]. The order conditions for the C-BDFs can also be derived from
those for the Runge-Kutta schemes. For example, for the three-stage (q = 3)
TR-BDFs scheme (17), we have the following order conditions:

θk − γ k θk−1 = L θk k = 1, 2, (57a)

1− γk = eqL θk k = 1, 2, 3. (57b)

Here, θ = (θ1, θ2, · · · , θq)
T . For the three-stage (q = 3) IM-BDFs scheme (19),

the order conditions are

θk − γ k θk−1 = L θk k = 1, (58a)

1− γk = eqL θk k = 1, 2, 3. (58b)

6 Discussion

This paper presents a class of one-step multi-stage backward differentiation
formulas, called composite BDFs or C-BDFs, as a generalization of the TR-
BDF2 composite scheme. These schemes are equivalent to special type SDIRK
methods, and regarded as the one-step analogs of the multi-step BDFs. Un-
like the standard BDFs, however, the C-BDFs do not need external startup
calculation while maintaining the full accuracy of the scheme. The C-BDF
is easily implementable, and uses the Forward Euler (FE) and the Backward
Euler (BE) methods as fundamental building blocks.

Note that, for each i > 1, the right hand side of the TR-BDFs (17) or the
IM-BDFs (19), is an interpolation or extrapolation of the past intermediate
solutions {wj}i−1

j=0. If the interpolated or extrapolated solution is denoted by

vi ≡
i−1∑
j=0

αi,j wj, (59)

each stage in (17) or (19) can be regarded as a time integration of the evolu-
tion equation (1) by a timestep γ∆t with the simplest Backward Euler (BE)
method and the initial data given by vi. Naturally, a good initial guess for
iteratively solving the nonlinear equation,

wi − γ∆tf(wi) = vi, (60)
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can be computed with the Forward Euler (FE) method, i.e.,

w
(0)
i = vi + γ∆tf(vi). (61)

In this sense, each of the C-BDFs, (17) and (19), is made up of the simplest FE
and BE processes, which are interleaved with interpolation and extrapolation
operations on the intermediate solutions. Once the BE method successfully
works, the multi-stage C-BDF can be readily implemented.

In this paper, we intend to emphasize the composite formula as a more al-
gorithmic way of doing the special type SDIRK scheme rather than their
equivalence. Further investigation on the possible new insight of the C-BDFs
schemes from the perspective of backward differentiation is in progress. In the
future, we will also study on reliable and efficient error estimation techniques
for the C-BDFs.
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