飞行器设计系
张博

张博

职 务:副院长、飞行器设计系主任、研究员、博导

分工安排:主管科研与基地建设、资产管理、实验室管理与建设工作,协管保密、学科建设工作

办公电话:021-34208572

电子邮件:bozhang@sjtu.edu.cn

办公地址:欧宝app官方网站下载航空航天学院A322

个人主页:https://scholar.google.com/citations?hl=zh-CN&pli=1&user=3vYQaocAAAAJ

工作经历

时间 任职单位 职务
2021年1月-至今 欧宝app官方网站下载航空航天学院 研究员
2017年1月-2020年12月

欧宝app官方网站下载航空航天学院

副教授
2015年8月-2016年12月 华东理工大学资源与环境工程学院 副教授
2012年9月-2015年7月 华东理工大学资源与环境工程学院 讲师

教育背景

时间 毕业院校 学历
2008年-2012年

北京理工大学

博士
2009年-2011年 McGill University 联合博士
2006年-2008年 南京理工大学 硕士
2002年-2006年 江苏工业学院(现常州大学) 本科

研究方向

(1)激波与爆轰物理

(2)高超爆轰推进技术

(3)爆炸与冲击动力学

主要科研项目

1)2023.1-2026.12,国家自然科学基金面上项目(12272234):负责人;
2)2018.1-2021.12,国家自然科学基金面上项目(11772199):气相多元混合燃料爆轰极限动力学特性研究,负责人;
3)2018.1-2020.12,国家自然科学基金“面向发动机的湍流燃烧基础研究重大研究计划”培育项目(91741114):面向爆轰发动机的射流模式对激励爆轰起爆的湍流机制研究,负责人;
4)2015.1-2017.12,国家自然科学基金青年项目(11402092):不稳定性对气相爆轰波起爆与传播影响机理的研究,负责人;
5)2022.1-2024.12,国防科技173计划技术领域基金项目,负责人;
6)2022.9-2025.8,上海市2022年度“科技创新行动计划”政府间国际科技合作项目,负责人;
7)2022.4-2025.3,上海市自然科学基金面上项目,负责人;
8)2019.1-2020.12,工信部安全专项:低温推进剂应急设施安全距离研究,交大负责人;
9)2014.7-2015.12,中国博士后基金特别资助:气相混合燃料爆炸和爆轰的特征规律研究,负责人。

代表性论文专著

共计出版专著1部,发表论文71篇,其中SCI论文59篇,ESI高被引论文7篇。SCI被引2200余次,h-index:31 (统计至2022.10)

2022:

1)Zhang B*, Li Y, Liu H. Analysis of the ignition induced by shock wave focusing equipped with conical and hemispherical reflectors.Combustion and Flame, 2022,236:111763. [SCI, IF=5.767 (2022)]
2)Cheng J,Zhang B*, Yang ZZ, Liu H. Investigation of the effect of turbulence induced by double non-reactive gas jet on the deflagration-to-detonation transition.Aerospace Science and Technology, 2022,124: 107556. [SCI, IF=5.457 (2022)]
3)Cheng J,Zhang B*, Dai TK, Liu H. Effects of jet/flame interaction on deflagration-to-detonation transition by non-reactive gas jet in a methane-oxygen mixture.Aerospace Science and Technology,2022,126: 107581. [SCI, IF=5.457 (2022)]
4)Chang X Y, Bai C H,Zhang B*. The effect of gas jets on the explosion dynamics of hydrogen-air mixtures.Process Safety and Environmental Protection, 2022, 162:384-394[SCI, IF=7.926 (2022)]
5)Leo YD,Zhang B*. Explosion behavior of methane-air mixtures and Rayleigh-Taylor instability in the explosion process near the flammability limits.Fuel, 2022, 324: 124730 [SCI, IF=8.035 (2022)]
6)Chang X Y, Bai C H,Zhang B*, Sun B F. The effect of ignition delay time on the explosion behavior in non-uniform hydrogen-air mixtures.International Journal of Hydrogen Energy, 2022, 47:9810-9818 [SCI, IF=7.139(2022)]

2021:

7)Zhang B*, Li Y, Liu H. Ignition behavior and the onset of quasi-detonation in methane-oxygen using different end wall reflectors.Aerospace Science and Technology, 2021,116:106873. [SCI, IF=5.107 (2021)]
8)Dai DK,Zhang B*, Liu H. On the explosion characteristics for central and end-wall ignition in hydrogen-air mixtures: A comparative study.International Journal of Hydrogen Energy, 2021, 46:30861-30869 [SCI, IF= 5.816 (2021)]
9)Xiao Q P , Cheng J,Zhang B*, Zhou J, Chen W H. Schlieren visualization of the interaction of jet in crossflow and deflagrated flame in hydrogen-air mixture,Fuel, 2021, 292: 120380[SCI, IF=6.609 (2021)]
10)Cheng J,Zhang B*, Liu H, Wang FX. The precursor shock wave and flame propagation enhancement by CO2 injection in a methane-oxygen mixture.Fuel, 2021, 283:118917(ESI高被引)
11)Cheng J,Zhang B*, Ng HD , Liu H, Wang FX. Effects of inert gas jet on the transition from deflagration to detonation in a stoichiometric methane-oxygen mixture.Fuel, 2021, 285: 119237[SCI, IF=5.578 (2020)]

2020:

12)Zhang B*, Liu H, Yan BJ, Ng HD. Experimental study of detonation limits in methane-oxygen mixtures: Determining tube scale and initial pressure effects.Fuel, 2020, 259 : 116220(ESI高被引)
13)Zhang B*, Chang X Y, Bai C H. End-wall ignition of methane-air mixtures under the effects of CO2/Ar/N2 fluidic jets.Fuel, 2020, 270:117485(ESI高被引)
14)Cheng J,Zhang B*, Liu H, Wang FX. Experimental study on the effects of different fluidic jets on the acceleration of deflagration prior its transition to detonation.Aerospace Science and Technology, 2020, 106:106203. [SCI, IF=4.499 (2020)]
15)Chang X Y,Zhang B*, Ng HD, Bai C H. The effects of pre-ignition turbulence by gas jets on the explosion behavior of methane-oxygen mixtures.Fuel, 2020, 277:118190[SCI, IF=5.578 (2020)]
16)Bai C H, Chang X Y,Zhang B*. Impacts of turbulence on explosion characteristics of methane-air mixtures with different fuel concentration.Fuel, 2020, 271: 117610[SCI, IF=5.578 (2020)]

2019:

17)Zhang B*,Liu H*, Yan BJ. Effect of acoustically absorbing wall tubes on the near-limit detonation propagation behaviors in a methane-oxygen mixture.Fuel, 2019, 236:975-83.(ESI高被引)
18)Zhang B*,Liu H*, Yan B J. Investigation on the detonation propagation limit criterion for methane-oxygen mixtures in tubes with different scales.Fuel, 2019, 239:617-622.(ESI高被引)
19)Zhang B*,Liu H. Theoretical prediction model and experimental investigation of detonation limits in combustible gaseous mixtures . Fuel, 2019, 258 :116132(ESI高被引)
20)Zhang B*, Liu H , Li YC. The effect of instability of detonation on the propagation modes near the limits in typical combustible mixtures. Fuel, 2019, 253:305-310.(ESI高被引)
21)Zhang B*. Detonation limits in methane-hydrogen-oxygen mixtures: Dominant effect of induction length.International Journal of Hydrogen Energy, 2019, 44: 23532-23537[SCI, IF=4.084 (2019)]
22)Yao N, Wang L Q, Bai C H, Liu N,Zhang B*. Analysis of dispersion behavior of aluminum powder in a 20 L chamber with two symmetric nozzles.Proc Safety Prog, 2019, e12097 [SCI, IF=0.885 (2019)]
23)Zhang B*,Liu H*, Yan B J. Velocity behavior downstream of perforated plates with large blockage ratio for unstable and stable detonations.Aerospace Science and Technology, 2019,86:236-243. [SCI, IF=3.050 (2018)]
24)Bai C H, Liu Nan ,Zhang B*. Experimental investigation on the lower flammability limits of diethyl ether/ n-pentane/epoxypropane-air mixtures,Journal of Loss Prevention in the Process Industries, 2019, 57: 273-279[SCI, IF=1.982 (2018)]

2018:

25)Zhang B*,Liu H*, Wang C. Detonation propagation limits in highly argon diluted acetylene-oxygen mixtures in channels.Experimental Thermal and Fluid Science, 2018,90:125-131. [SCI, IF=2.830 (2017)]

2017:

26)Zhang B*,Liu H*. The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane–oxygen mixture.Combustion and Flame, 2017, 182: 279-287.
27)Zhang B*,Liu H*, Wang C. Detonation velocity behavior and scaling analysis for ethylene-nitrous oxide mixture.Applied Thermal Engineering, 2017, 127: 671-678. [SCI, IF=3.356 (2017)]
28)Zhang B*,Liu H*, Wang C*. On the detonation propagation behavior in hydrogen-oxygen mixture under the effect of spiral obstacles.International Journal of Hydrogen Energy, 2017, 42:21392-21402 [SCI, IF=3.582(2017)]
29)Zhang B*,Liu H*, Wang C. An experimental study on the detonability of gaseous hydrocarbon fuel–oxygen mixtures in narrow channels.Aerospace Science and Technology, 2017,69:193-200. [SCI, IF=2.057 (2017)]
30)Shen XB,Zhang B, Zhang XL, et al. Explosion characteristics of methane-ethane mixtures in air.Journal of Loss Prevention in the Process Industries, 2017,45:102-107. [SCI, IF=1.409(2016)]

2016:

31)Zhang B*. The influence of wall roughness on detonation limits in hydrogen-oxygen mixture.Combustion and Flame, 2016, 169:333-339.
32)Zhang B*, Wang C, Shen XB, et al. Velocity fluctuation analysis near detonation propagation limits for stoichiometric methane-hydrogen-oxygen mixture.International Journal of Hydrogen Energy.2016, 41:17750-17759. [SCI, IF=3.205(2016)]
33)Wang C, Zhao YY,Zhang B*. Numerical simulation of flame acceleration and deflagration-to-detonation transition of ethylene in channels.Journal of Loss Prevention in the Process Industries, 2016,43:120-126. [SCI, IF=1.409(2016)]
34)Zhang B*, Ng HD. An experimental investigation of the explosion characteristics of dimethyl ether-air mixtures.Energy, 2016,107:1-8. [SCI, IF=4.292(2016)]
35)Zhang B*, Shen XB, Pang L, Gao Y. Methane-oxygen detonation characteristics near their propagation limits in ducts.Fuel. 2016,177:1-7. [SCI, IF=3.611(2016)]
36)Shen XB*,Zhang B*, Zhang XL, Wu SZ. Explosion behaviors of mixtures of methane and air with saturated water vapor.Fuel. 2016, 177:15-18. [SCI, IF=3.611 (2016)]
37)Gao Y*,Zhang B, Ng HD, Lee JHS. An experimental investigation of detonation limits in hydrogen-oxygen-argon mixtures.International Journal of Hydrogen Energy.2016, 41: 6076-6083. [SCI, IF=3.205(2016)]
38)Zhang B*, Pang L*, Shen XB*, Gao Y, Measurement and prediction of detonation cell size in binary fuel blends of methane/hydrogen mixtures.Fuel.2016, 172:196-199. [SCI, IF=3.611 (2016)]
39)Zhang B*, Pang L*, Gao Y. Detonation limits in binary fuel blends of methane/hydrogen mixtures.Fuel. 2016,168: 27-33. [SCI, IF=3.611 (2016)]

2015:

40)Zhang B*, Shen XB*, Pang L*, Gao Y. Detonation velocity deficits of H2/O2/Ar mixture in round tube and annular channels.International Journal of Hydrogen Energy. 2015,40(43): 15078-15087. [SCI, IF=3.313(2016)]
41)Zhang B*, Shen XB*, Pang L. Effects of argon/nitrogen dilution on explosion and combustion characteristics of dimethyl ether-air mixtures.Fuel.2015, 159: 646-652. [SCI, IF=3.52(2015)]

42)Zhang B*, Ng HD. Explosion behavior of methane–dimethyl ether/air mixtures.Fuel. 2015,157:56-63. [SCI, IF=3.52(2015)]
43)Zhang B*, Xiu GL*, Chen J, Yang SP. Detonation and deflagration characteristics of p-Xylene/gaseous hydrocarbon fuels/air mixtures.Fuel. 2015,140:73-80[SCI, IF=3.52(2015)]

2014:

44)Zhang B*, Mehrjoo N, Ng HD, Lee JHS. On the dynamic detonation parameters in acetylene-oxygen mixtures with varying amount of argon dilution.Combustion and Flame.2014,161:1390-1397.
45)Zhang B*, Xiu GL., Bai CH. Explosion characteristics of argon/nitrogen diluted natural gas-air mixtures.Fuel. 2014, 124:125-132 [SCI, IF=3.406(2014)]
46)Zhang B*, Bai CH. Methods to predict the critical energy of direct detonation initiation in gaseous hydrocarbon fuels-An overview.Fuel. 2014,117:294-308[SCI, IF=3.406(2014)]
47)Zhang B*, Bai CH, Xiu GL, Liu QM, Gong GD. Explosion and flame characteristics of methane/air mixtures in a large-scale vessel.Process Safety Progress. 2014,33(4):362-368 [SCI, IF=0.593(2013)]
48)Mehrjoo N,Zhang B, Portaro R, Ng HD*. Lee JHS. Response of critical tube diameter phenomenon to small perturbations for gaseous detonations.Shock Waves. 2014, 24(2):219-229 [SCI, IF=0.743(2013)]

2013:

49)Zhang B, Ng, H.D*, Lee JHS. Measurement and relationship between critical tube diameter and critical energy for direct blast initiation of gaseous detonations.Journal of Loss Prevention in the Process Industries. 2013,26: 1293-1299 [SCI, IF=1.347(2013)]
50)Bai CH,Zhang B*, Xiu GL,Liu QM, Chen M. Deflagration to detonation transition and detonation structure in diethyl ether mist/aluminum dust /air mixtures.Fuel. 2013,107:400-408 [SCI, IF=3.357(2012)]
51)Yao GB,Zhang B*, Xiu GL, Bai CH, Liu PP. The critical energy of direct initiation and detonation cell size in liquid hydrocarbon fuel/air mixtures.Fuel. 2013, 113: 331-339. [SCI, IF=3.357(2012)]
52)Zhang B*, Bai CH. Critical energy of direct detonation initiation in hydrocarbon-oxygen mixtures.Safety Science. 2013, 53:153-159, [SCI, IF=1.402(2013)]
53)Bai CH, Chen J*,Zhang B,Wang, Z. Q. Effect of Explosive Sources on the Elastic Wave Field of Explosions in Soils.Defence Science Journal.2013, 63(4):376-380 [SCI, IF=0.31(2013)]

2012:

54)Zhang B, Ng HD*, Lee JHS. Measurement of effective blast energy for direct initiation of spherical gaseous detonations from high-voltage spark discharge.Shock Waves. 2012,22(1): 1-7[SCI, IF=0.951(2011)]
55)Zhang B*, Ng HD, Lee JHS. The critical tube diameter and critical energy for direct initiation of detonation in C2H2/N2O/Ar mixtures.Combustion and Flame, 2012,159(9): 2944-2953
56)Zhang B, Ng HD*, Lee JHS. Measurement and scaling analysis of critical energy for direct initiation of detonation.Shock Waves. 2012,22(3): 275-279 [SCI, IF=0.951(2011)]
57)Eaton R,Zhang B, Bergthorson JM, Ng HD*. Measurement and chemical kinetic predictions of detonation cell size in methanol-oxygen mixtures.Shock Waves, 2012, 22(2): 173-178 [SCI, IF=0.951(2011)]

2011:

58)Zhang B, Kamenskihs V, Ng HD*, Lee JHS. Direct blast initiation of spherical gaseous detonation in highly argon diluted mixtures.Proceedings of the Combustion Institute, 2011, 33 (2): 2265-2271
59)Zhang B, Ng HD*, Mével R, Lee JHS. Critical energy for direct initiation of spherical detonations in H2/N2O/Ar mixtures.International Journal of Hydrogen Energy, 2011, 36:5707-5716 [SCI, IF=4.054(2011)]

中文期刊论文:

1)专著:张博,白春华. 气相爆轰动力学[M],科学出版社,31.2万字,2012
2)韩文虎,张博,王成. 气相爆轰波起爆与传播机理研究进展. 爆炸与冲击,2021,41(12): 121402 (EI)
3)颜秉健,张博*,等. 气相爆轰波近失效状态的传播模式. 爆炸与冲击,2018,38(6):1435-1440 (EI)
4)张博*,白春华.气相爆轰动力学特征研究进展.中国科学(物理学 力学 天文学). 2014, 44(7): 665-681.
5)高慧会,张博*,等. 二甲醚/空气/氩气混合物的爆炸特性. 爆炸与冲击,2015, 35(5): 753-757 (EI).
6)张博*,白春华. 高电压点火有效能量的测量及相关问题. 爆炸与冲击,2013, 33(1): 85-90, (EI).
7)张博*,白春华. H2-O2/Air直接起爆形成爆轰临界能量的预测模型. 高压物理学报,2013, 27(5):719-724.
8)张博*,白春华. C2H2-O2-Ar混合气体爆轰特征参数研究.高压物理学报,2013, 27(2): 287-291.
9)张博*,白春华. C2H2-O2-Ar和C2H2-N2O-Ar直接起爆形成爆轰的临界能量.爆炸与冲击, 2012, 32(6):592-598 (EI).
10)张博*,John H.S. Lee,白春华. 高浓度氩气稀释对C2H2-2.5O2气体直接起爆临界起爆能量影响的实验研究. 高压物理学报,2012, 26(1):55-62 (EI).
11)张博*,John H.S. Lee,白春华.C2H4-O2混合气体直接起爆的临界能量. 爆炸与冲击,2012 , 32(2):113-120, (EI).
12)张博*,白春华,John H.S. Lee.C2H2-2.5O2-Ar混合气体临界管径和爆轰胞格及临界起爆能量的实验研究.北京理工大学学报. 2012, 32(3):226-230 (EI).

发明专利:

1)张博,李元昌,刘洪. 一种激波聚焦点火及相应点火特性测量装置及方法, 授权号:ZL202110699623.2
2)张博,刘洪,代廷楷,程俊,李元昌.一种基于高速射流的爆轰激励系统及方法, 授权号:ZL201910497759.8
3)张博,李元昌,程俊,代廷楷,刘洪. 一种爆燃波传播特性的测试装置及方法,授权号:ZL202010057724.5
4)张博,沈晓波,于文强,陈婷,陈潇,李嘉晨,谢禄霖.一种监测爆轰波速度变化的系统及方法.2014.10. 授权号:ZL 201410669242.X
5)张博,白春华.可燃气体爆轰临界管径的测试系统和方法, 2013.9,授权号:ZL20121 0052665.8
6)张博,白春华.直接起爆形成爆轰的临界能量测试方法, 2013.7,授权号:ZL20121 0058653.6

教学工作

课程名称:燃烧学

授课对象:本科生

学时数:48

学分:3

荣誉奖励

1) 上海市人才发展资金,2021

2)欧宝app官方网站下载航空航天学院2018和2019年度优秀教师
3)欧宝app官方网站下载“第四届青年教师教学竞赛”,三等奖,2019
4)欧宝app官方网站下载“第三届青年教师教学竞赛”,优秀奖,2018
5)欧宝app官方网站下载“晨星青年学者奖励计划”(副教授B类计划),2017
6)John H.S. Lee Young Investigator Award, Institute for Dynamics of Explosions and Reactive Systems (IDERS), Leeds, UK,2015
7)教育部科技进步一等奖(排名7/10),2014年
8)教育部学术新人奖,2011年

欧宝app官方网站下载航空航天学院 版权所有

网站邮箱:SJTUSAA@sjtu.edu.cn

技术支持:维程互联

    Baidu
    map