1.Zhiheng Deng#, Huasong Ai#,* (共一/共通讯), Qiang Shi#, Jiawei Liang, Zaozhen He, Jiqing Zheng, Haoxiang Li, Liying Zhang, Wei He, Shixian Tao, Qingyun Zheng, Wei He, Man Pan*, Lei Liu*. A Cryptic Interfacial Pocket Uncovered in Full CRL4CRBN–IKZF3 Ubiquitylation Complex Enhances IMiD Efficacy. 2025, bioRxiv, doi.org/10.1101/2025.06.08.658527.
本研究通过冷冻电镜首次解析了八种临床IMiD药物(包括沙利度胺、来那度胺等)与完整CRL4CRBN泛素化复合物(含Nedd8激活的E3连接酶、E2~Ub及底物IKZF3)的高分辨率(3.4–3.8 Å)结构,揭示了IMiD诱导泛素化的全分子机制。研究发现,所有IMiD均通过保守的邻苯二甲酰亚胺/谷氨酰亚胺核心结合CRBN的沙利度胺结合域(TBD),介导IKZF3的ZF2降解基序泛素化。关键突破在于发现四种高效“新一代IMiD”(如美齐度胺)可额外结合一个隐秘的胶合驱动界面(GDI)口袋——该口袋由IKZF3的非降解基序ZF3与CRBN的Lon结构域在复合物组装时协同形成。GDI口袋的占据通过增强药物-蛋白相互作用,显著提升IKZF3泛素化效率及底物特异性。该发现超越传统三元复合物模型的认知,为基于GDI口袋结构的IMiD药物优化提供了全新设计策略,有望推动靶向蛋白降解疗法的精准开发。
2.Tianyi Zhang#, Jiqing Zheng#, Zebing Tong#, Zhiheng Deng#, Zaozhen He, Xiangwei Wu, Miao Wang, Yunxiang Du, Ziyu Xu, Shixian Tao, Xiaolin Tian, Haiteng Deng, Man Pan*, Huasong Ai*(共通讯), Lei Liu*. Unique Gluing Effect of ASXL1 K351 Monoubiquitination Stimulates PR-DUB-Mediated Nucleosomal H2AK119Ub Deubiquitination. 2025, bioRxiv, doi.org/10.1101/2025.04.25.650627.
本研究揭示了ASXL1 K351单泛素化通过独特的“分子胶合”机制激活PR-DUB复合物催化活性的新范式。通过冷冻电镜结构解析,发现ASXL1 K351连接的泛素作为分子桥梁稳定了BAP1与ASXL1亚基间的相互作用,形成夹心结构。这种远端泛素化并不改变PR-DUB与H2AK119Ub核小体的结合模式或亲和力(Km不变),而是通过限制催化口袋的构象动力学,显著提升最大反应速率(Vmax增加2-3倍)。分子动力学模拟和氢氘交换质谱证实,泛素介导的亚间交联增强了BAP1催化口袋关键残基的刚性,维持了底物泛素结合的最优空间构象。该机制突破了传统泛素化调控局限于酶-底物界面的认知,为泛素作为变构分子胶的理论框架提供了重要实证,对理解PR-DUB相关肿瘤(如间皮瘤)的致病机制具有启示意义。
3.Zebin Tong#, Xiangwei Wu#, Hongyi Cai#, Shidian Wu, Tianyi Zhang, Zhiheng Deng, Ziyu Xu, Rujing Yuan, Huasong Ai* (共通讯), Lei Liu*, Man Pan*. Structural basis for the ubiquitin E4 enzyme Ufd2-catalyzed K48/K29 branched ubiquitin chains. Nature Chemical Biology, 2025, 10.1038/s41589-025-01985-2.
泛素化是细胞调控蛋白质命运的核心信号。除了经典的E1-E2-E3酶级联,还存在被称为E4的泛素连接酶,它们能对已标记泛素的底物进行“再加工”,形成更复杂的分支泛素链(如K48/K29链),将信号从非降解型转变为降解型,指导蛋白质被蛋白酶体清除。Ufd2是首个被发现的E4酶,但其工作机制20多年来一直成谜。我们创新性地设计并合成了模拟反应中间态的化学探针,结合冷冻电镜技术(Cryo-EM),成功捕获了Ufd2酶与其搭档Ubc4(E2酶)、以及不同长度(二聚体、三聚体)K29泛素链在“工作状态”下的复合物结构。这项研究揭示了E4酶组装复杂分支泛素链的精确分子机制,解决了领域内长期悬而未决的关键问题,为深入理解蛋白质降解调控、开发相关疾病(如神经退行性疾病、癌症)的新疗法提供了重要理论基础。
4.Chuntong Li, Fangyu Zhao, Chong Zuo, Liying Zhang, Yangwode Jing, Xu Li, Guo-Chao Chu, Luyu Shi, Yingyue Zhang, Han Wang, Shuzhe Sun, Maoshen, Sun, Huasong Ai*(共通讯), Lu-Jun Liang*, Jinghong Li*. Design and Semi-synthesis of Ubiquitin Extension Probes for Structural Analysis of Cullin1 Mediated Substrate Polyubiquitination. Journal of the American Chemical Society, 2025, doi.org/10.1021/jacs.5c06399.
本工作首次设计并半合成了可捕获四聚泛素链延伸中间体的新型化学探针“Extension ProbeUb₄”,创新性地结合了化学合成与酶催化策略。利用该探针,成功解析了CRL1复合物在催化底物p27发生K48连接的四聚泛素化过程中的瞬时结构,发现在泛素链延伸过程中CRL1的催化模块(含E2-泛素)呈现高度动态性,而支架模块结构保持稳定。该工作突破了传统探针仅能研究单/双泛素化的局限,为深入理解蛋白质靶向降解等关键过程提供了新工具和新视角。
5.Junxiong Mao#, Huasong Ai# (共一), Xiangwei Wu#, Qingyun Zheng*, Hongyi Cai, Lujun Liang, Zebin Tong, Man Pan*, Lei Liu*. Structural visualization of HECT-type E3 ligase Ufd4 accepting and transferring ubiquitin to form K29/K48-branched polyubiquitination. Nature Communications, 2025, 16(1), 4313.
我们通过冷冻电镜(cryo-EM)技术结合创新的化学交联探针策略,首次成功捕获并解析了HECT型泛素连接酶Ufd4在合成关键降解信号——K29/K48分支型多聚泛素链过程中的多个关键瞬态结构。这些结构清晰地揭示了Ufd4如何通过其N端ARM结构域和HECT结构域C-lobe协同作用,精准识别并结合K48连接的泛素链底物,并将活性位点上的供体泛素定向转移到底物链近端泛素的第29位赖氨酸(K29)上,从而高效催化K29/K48分支链的形成。该研究不仅阐明了Ufd4作用的关键分子机制,也为理解其人类同源蛋白TRIP12在靶向蛋白降解中的作用提供了重要结构基础。
6.Shixian Tao#, Wei He#, Chuntong Li, Jiawei Liang, Zebin Tong, Zhiheng Deng, Liying Zhang, Huasong Ai*(共通讯), Lu-Jun Liang* & Lei Liu*. Synthesis of an E2-Ub-Nucleosome Conjugate to Capture the E3 Ligase PHF7-Catalyzed H3K14 Ubiquitination Intermediate. Science China Chemistry, 2025, doi.org/10.1007/s11426-025-2697-6.
组蛋白H3的泛素化修饰在基因表达调控等生命过程中至关重要,但其分子机制研究因E3/E2/Ub/核小体复合物极不稳定且瞬时存在而面临巨大挑战。本研究通过创新的化学蛋白质合成策略,将泛素(Ub)与其E2(Ubch5c)共价连接,并将此复合物定点锚定在核小体组蛋白H3的K14位点,构建了模拟泛素转移中间态的核小体探针样品,为深入解析H3及其他组蛋白特定位点泛素化的分子机制提供坚实的方法学基础。
7.Yunxiang Du#, Maoshen Sun#, ZhengQing Li#, Xiangwei Wu, Qian Qu*, Huasong Ai* (共通讯), Lei Liu*. Mechanistic Insights into the Stimulation of the Histone H3K9 Methyltransferase Clr4 by Proximal H3K14 Ubiquitination. Science Advances, 2025, 11(22), eadu1864.
组蛋白泛素化调控甲基化修饰的功能性串扰(functional crosstalk)主要集中研究核小体不同组蛋白之间的过程(in cis crosstalk),针对异染色质建立早期的H3K9甲基化修饰,酵母中唯一的生成酶Clr4受自甲基化的激活并且受临近位点H3K14Ub激活,自甲基化激活的机制2018年在Nature中得到报道,然而Clr4受H3K14Ub激活的机制一直未知。这个工作中我们解析了Clr4与H3K14Ub修饰与未修饰的短肽晶体结构,揭示了Clr4与H3K14Ub互作调控的酶学机制,既贡献结合力也变构增强酶的本征催化效率,该工作是第一例组蛋白in cis crosstalk的研究案例,增加了对异染色质的分子调控理解。
8.Qiang Shi#, Zhiheng Deng#, Liying Zhang#, Zebin Tong, Jia-Bin Li, Guo-Chao Chu*, Huasong Ai* (共通讯), and Lei Liu*. Promotion of RNF168-Mediated Nucleosomal H2A Ubiquitylation by Structurally-defined K63-Polyubiquitylated Linker Histone H1. Angew. Chem. Int. Ed., 2025, 64(1), e202413651.
为研究RNF168起始招募到DNA双链断裂损伤位点的过程受连接组蛋白H1上泛素化的影响,我们开发了一种高效的CAEPL半合成策略获取定点修饰的、不同K63泛素链长度的泛素化连接组蛋白H1样品,定量生化探索对RNF168不同结构域的活性,发现H1上K63泛素链能够以增强酶和底物结合力的方式直接激活RNF168对H2AK13/15泛素化活性。接下来我们还进行了结构机制以及双核小体水平的串扰激活探索,该工作从化学生物学视角系统探索了第一例连接组蛋白与核心组蛋白翻译后修饰的串扰。
9.Huasong Ai#, Zebin Tong#, Zhiheng Deng#, Qiang Shi, Shixian Tao, Gaoge Sun, Jiawei Liang, Maoshen Sun, Xiangwei Wu, Qingyun Zheng, Lujun Liang, Hang Yin, Jia-Bin Li, Shuai Gao, Changlin Tian*, Lei Liu*, Man Pan*. Mechanism of nucleosomal H2A K13/15 monoubiquitination and adjacent dual monoubiquitination by RNF168. Nature Chemical Biology, 2025, 21, 668.
当前染色质位点选择性的机制认识主要源自二聚体的RING型E3酶与核小体互作进的结构,为研究DNA损伤修复通路中单体RING结构域的RNF168特异性泛素化核小体H2AK13/15的机制,本文发展并运用了基于活性的空间临近定点交联技术(activity-based chemical trapping strategy),解析动态瞬时的RNF168/UbcH5c~Ub/核小体的复合物结构,提出一种单体RING型E3酶的“helix-anchoring”mode的新理论,并且通过化学合成的均质泛素化修饰组蛋白样品,首次评估了临近位点双泛素化修饰(H2AK13Ub-K15Ub)的修饰安装效率与结构基础。该工作在单体E3酶选择性机制认知、DNA双链损伤修复通路、RNF168疾病相关突变方面提供全新的见解。
10.Qi Shu, Yun Liu, Huasong Ai (通讯)*. The Emerging Role of the Histone H2AK13/15 Ubiquitination: Mechanisms of Writing, Reading, and Erasing in DNA Damage Repair and Disease. Cells, 2025, 14(4), 307.
本文综述了近期H2AK13/15Ub的机制研究现状,探讨其在DNA损伤修复与疾病发生发展中的作用。
11.Huasong Ai#, Zaozhen He#, Zhiheng Deng#, Guo-Chao Chu, Qiang Shi, Zebin Tong, Jia-Bin Li, Man Pan* & Lei Liu*. Structural and mechanistic basis for nucleosomal H2AK119 deubiquitination by single-subunit deubiquitinase USP16. Nature Structural & Molecular Biology, 2024, 1745-1755.
为研究单亚基H2AK119Ub逆调控蛋白USP16的工作机制,本文解析了USP16与H2AK119Ub核小体的复合物电镜结构,并结合蛋白化学合成的H2AK119Ub修饰核小体样品进行USP16生化验证,揭示了一种不依赖于H2A-H2B酸性区域的、有别于PR-DUB的、全新的H2AK119Ub核小体去泛素化工作模式。这为理解唐氏综合症的发病机制、以及开发潜在的治疗策略提供结构基础与框架。
12.Huasong Ai#, Maoshen Sun#, Aijun Liu#, Zixian Sun#, Tingting Liu#, Lin Cao, Lujun Liang, Qian Qu, Zichen Li, Zhiheng Deng, Zebin Tong, Guochao Chu, Xiaolin Tian, Haiteng Deng, Suwen Zhao, Jiabin Li, Zhiyong Lou, Lei Liu. H2B Lys34 ubiquitination induces nucleosome distortion to stimulate Dot1L activity. Nature Chemical Biology, 2022, 18, 972-980.
为了阐释染色质翻译后修饰H2BK34Ub与Dot1L介导的H3K79me之间串扰的机制,本文采用基于多肽酰肼连接的半合成策略,高效获取了H2BK34ub组蛋白并重组为核小体,并解析了高分辨率Dot1L-H2BK34Ub核小体复合物电镜结构,结合生化实验、氢氘交换质谱、理论计算等实验提出一种核小体形变假说——泛素修饰不直接与酶相互作用,而是诱导底物形变来变构激活酶学活性。
13.Huasong Ai#, Guochoa Chu#, Qingyue Gong#, Zhiheng Deng, Zebin Tong, Xin Liu, Fan Yan, Jiabin Li*, Changlin Titan*, Lei Liu*. Chemical Synthesis of Post-Translationally Modified H2AX Reveals Redundancy in Interplay between Histone Phosphorylation, Ubiquitination, and Methylation on the Binding of 53BP1 with Nucleosomes. Journal of the American Chemical Society, 2022, 144, 18329-18337.
为研究不同修饰与组合在53BP1招募中的定量生化效果,本文发展了一种基于多肽酰肼连接与烷基化学的双修饰组蛋白H2AXK15ub-S139ph合成策略,利用蛋白碳末端半胱氨酸肼解方法高效获取多肽酰肼片段,获取了多种不同翻译后修饰类型(磷酸化、泛素化、甲基化)与组合的修饰核小体,研究了53BP1受不同修饰与组合类型招募的生化影响,并首次解析了53BP1与三修饰核小体的复合物电镜结构,发现磷酸化修饰会改变53BP1与泛素的识别模式,这可能是识别冗余效应的分子原因。
14.Huasong Ai#, Zebin Tong#, Zhiheng Deng, Jiakun Tian, Liying Zhang, Maoshen Sun, Yunxiang Du, Ziyu Xu, Qiang Shi, Lujun Liang, Qingyun Zheng, Jiabin Li, Man Pan*, Lei Liu*. Synthetic E2-Ub-nucleosome conjugates for studying nucleosome ubiquitination. Chem 2023, 9, 1221-1240.
为研究核小体位点特异性生成泛素化的结构机制,本文开发了一种基于反应机理的E2-Ub核小体缀和策略,通过化学合成将E2-Ub的活性中心与底物赖氨酸反应位点构建共价键方式,成功获取了PRC1与BRCA1/BARD1的E3/E2-Ub/核小体复合物电镜结构。该方法克服了直接孵育组装复合物的结合力弱、蛋白线性融合需要戊二醛交联等不足。该工作受到了国际梅奥诊所医学与科学学院的Georges Mer教授等高度点评。
15.Huasong Ai, Lei Liu*. Paralog-specific recognition. Nature Chemical Biology, 2023, 5, 542-543.
旁系物特异性的H3K36去甲基化酶KDM2A/B针对核小体酸性区域识别的特异性机制来源评述。
16.Huasong Ai, Man Pan, Lei Liu*. Chemical synthesis of human proteoforms. ACS Central Science, 2024, 10, 8, 1442–1459.
在后基因组时代,对带有复杂翻译后修饰组合的人类蛋白形式的功能和机制了解不足是人类健康和疾病研究的一大障碍。使用重组表达等传统生物技术仍然难以对这些蛋白形式进行研究,而化学蛋白合成则为以化学精度生成结构明确的人类蛋白形式提供了切实可行的途径。在本综述中,我们主要根据自己的研究经验,讨论化学蛋白合成在人类蛋白形式研究中的机遇和挑战。
17.Zebin Tong#, Huasong Ai#, *(共一/共通讯), Ziyu Xu#, Kezhang He#, Guo-Chao Chu, Qiang Shi, Zhiheng Deng, Qiaomei Xue, Maoshen Sun, Yunxiang Du, Lujun Liang, Jia-Bin Li, Man Pan* & Lei Liu*. Synovial Sarcoma X Breakpoint 1 Protein uses a cryptic groove to selectively recognize H2AK119Ub Nucleosomes. Nature Structural & Molecular Biology, 2024, 31, 300–310.
SS18与SSX1基因异位融合,导致异染色质区域基因被异常激活,从而诱发滑膜肉瘤疾病。本文解析了基本元件SSX1特异性识别H2AK119Ub核小体的结构机制,发现SSX1一端识别核小体经典的酸性区域,另一端酸性的尾巴被H3与泛素共同诱导的碱性沟槽识别,这种特异性的识别模式解释了SSX1为何只识别H2AK119位点的泛素。这揭示了一种新型底物诱导的泛素化核小体位点特异性识别模式,靶向H3-Ub碱性沟槽为设计靶向滑膜肉瘤的药物提供可能。
18.Zhiheng Deng#, Huasong Ai# (共一), Maoshen Sun#, Zebin Tong#, Yunxiang Du#, Qian Qu, Liying Zhang, Ziyu Xu, Shixian Tao, Qiang Shi, Jia-Bin Li, Man Pan, and Lei Liu*. Mechanistic insights into nucleosomal H2B monoubiquitylation mediated by yeast Bre1-Rad6 and its human homolog RNF20/RNF40-hRAD6A. Molecular Cell, 2023, 83, 3080-3094.E14.
为阐释转录激活相关的H2AK120Ub修饰在核小体位点特异性生成的机制,本文开发了一种基于蛋白合成与内含肽自剪接的化学捕获策略,解析了酵母与人源的H2BK120Ub的泛素连接酶(Bre1, RNF20/40)在核小体水平工作的结构。揭示了一种核小体DNA参与调控的、H2BK120位点特异性的泛素化生成机制,并为理解人源RNF20/40疾病突变的致病机理提供结构基础。
19.Zichen Li#, Zebin Tong#, Qingyue Gong#, Huasong Ai* (共通讯), Shuai Peng, Cong Chen, Guo-Chao Chu, Jia-Bin Li*. The expedient, CAET-assisted synthesis of dual-monoubiquitinated histone H3 enables evaluation of its interaction with DNMT1. Chemical Science, 2023,14, 5681-5688.
本文开发了一种基于CAET小分子的双位点单泛素化组蛋白H3的合成策略,获取了H3K18Ub,H3K23Ub,H3K28/23Ub2三种修饰的组蛋白并组成核小体,系统评估了不同位点与数量的泛素化修饰对DNMT1招募的区别,为DNA半甲基化遗传过程中H3泛素化修饰激活DNMT1活性提供见解。
20.Huasong Ai, Shuai Peng, Jia-Bin Li. Chemical methods for studying the crosstalk between histone H2B ubiquitylation and H3 methylation. Journal of Peptide Science, 2021, e3381.
本文系统总结了化学生物学方法如何增进H2BK120单泛素化修饰与H3K79甲基化之间的串扰机制研究。
21.Huasong Ai, Yu Guo, Demeng Sun, Sanling Liu, Yunkun Qi, Jing Guo, Qian Qu, Qingyue Gong, Suwen Zhao,* Jiabin Li,* and Lei Liu*. Examination of the Deubiquitylation Site Selectivity of USP51 by Using Chemically Synthesized Ubiquitylated Histones. ChemBioChem, 2019, 20, 221-229.
本文针对前人报道的体内H2AK15Ub的去泛素化酶USP51进行精准酶学重构,利用酸敏感的辅基方法化学合成了四种泛素化组蛋白,包括H2AK15Ub,H2AK119Ub,H2BK34Ub以及H2BK120Ub,并组装成核小体,进行USP51去泛素化酶活性实验,系统评估了活性、选择性等生化参数。这强调了化学合成的精准修饰样品在体外酶活重构中的重要价值。
22.Yunkun Qi#, Huasong Ai# (共一), Yiming Li, Binghui Yan. Total Chemical Synthesis of Modified Histones. Frontiers in Chemistry, 2018, 6, 19.
本文系统综述了翻译后修饰组蛋白H2A, H2B, H3与H4的化学合成现状。
【合作论文】
23.Man Pan#*, Qingyun Zheng#, Tian Wang#, Lujun Liang#, Chong Zuo, Ruichao Ding, Huasong Ai, Yuan Xie, Si Dong, Yuanyuan Yu*, Lei Liu*, Minglei Zhao*. Structural Insights Into the Initiation and Elongation of Ubiquitination by Ubr1. Nature, 2021, 600, 334–338.
24.Man Pan#*, Yuanyuan Yu#, Huasong Ai; Qingyun Zheng, Yuan Xie, Lei Liu*, Minglei Zhao*. Mechanistic insight into substrate processing and allosteric inhibition of human p97. Nat. Struct. Mol. Biol., 2021, 28, 614-625.
25.Man Pan#, Qingyun Zheng#, Yuanyuan Yu#, Huasong Ai, Yuan Xie, Xin Zeng, Chu Wang, Lei Liu*, Minglei Zhao*. Seesaw conformations of Npl4 in the human p97 complex and the inhibitory mechanism of a disulfiram derivative, Nat. Commun., 2021, 12(1): 121.
26.Qiang Shi, Zebin Tong, Zhiheng Deng, Ziyu Xu, Huasong Ai, Yang Liu, Lei Liu*. Chemical mechanisms of nucleosomal histone ubiquitination by RING-type E3 enzymes. Sci. Sin. Chim., 2023, 53.
27.Ziyu Xu, Huasong Ai, Maoshen Sun, Jiakun Tian, Lei Liu*. Advances on structural mechanisms of ubiquitinated nucleosome complexes. Sci. Sin. Chim., 2020, 50, 415-436.
28.Guo-Chao Chu, Man Pan, Jiabin Li, Sanling Liu, Chong Zuo, Ze-Bin Tong, Jing-Si Bai, Qingyue Gong, Huasong Ai, Jian Fan, Xianbin Meng, Yi-Chao Huang, Jing Shi, Haiteng Deng, Changlin Tian*, Yi-Ming Li*, Lei Liu*. Cysteine-aminoethylation-assisted chemical ubiquitination of recombinant histones. J. Am. Chem. Soc., 2019, 141, 3654-3663.
29.Chong Zuo, Ruichao Ding, Xiangwei Wu, Yuanxia Wang, Guo-Chao Chu, Lu-Jun Liang, Huasong Ai, Ze-Bin Tong, Junxiong Mao, Qingyun Zheng, Tian Wang, Zichen Li, Lei Liu*, Demeng Sun*. Thioester-assisted Sortase-A – mediated ligation. Angew. Chem. Int. Ed., 2022, 61, e202201887.
30.Zhiheng Deng, Huasong Ai, Chengpiao Lu, Jia-Bin Li*. The Bre1/Rad6 machinery: writing the central histone ubiquitin mark on H2B and beyond. Chromosome Res. 2020, 28(3-4):247-258.
31.Zebin Tong, Huasong Ai, Jia-Bin Li*. The Mechanism of Chromatin Remodeler SMARCAD1/Fun30 in Response to DNA Damage. Front. Cell Dev. Biol. 2020 8:560098.
32.Jia-Bin Li#, Yun-Kun Qi#, Qiao-Qiao He, Huasong Ai, San-Ling Liu, Jia-Xing Wang, Ji-Sheng Zheng, Lei Liu, Changlin Tian*. Chemically synthesized histone H2A Lys13 di-ubiquitination promotes binding of 53BP1 to nucleosomes. Cell Res. 2018, 28, 257-260.
33.Yunkun Qi, Qiaoqiao He, Huasong Ai, Jing Guo, Jia-Bin Li*. The convergent chemical synthesis of histone H3 protein for site-specific acetylation at Lys56 and ubiquitination at Lys122. Chem. Commun. 2017, 53(29):4148-4151.
34.Chen-Chen Chen#, Shuai Gao#, Huasong Ai, Qian Qu, Chang-Lin Tian& Yi-Ming Li*. Racemic X-ray structure of L-type calcium channel antagonist Calciseptine prepared by total chemical synthesis. Sci. China Chem. 2018, 61, 702-707.
35.Yun-Kun Qi , Qiao-Qiao He , Huasong Ai , Jia-Bin Li* , Ji-Shen Zheng*. Convergent Total Synthesis of Histone H2B Protein with Site-Specific Ubiquitination at Lys120. Synlett, 2017; 28, 1907-1912.
36.Guo-Chao Chu#, Lu-Jun Liang#, Rui Zhao#, Yan-Yan Guo, Chun-Tong Li, Chong Zuo, Huasong Ai, Xiao Hua, Zi-Chen Li, Yi-Ming Li, Lei Liu. Ferricyanide-promoted Oxidative Activation and Ligation of Protein Thioacids in Neutral Aqueous Media. CCS Chem. 2024, 6, 2031–2043.
37.Li-Li Feng#, Shu-Ying Bie#, Zhi-Heng Deng#, Shao-Mei Bai#, Jie Shi, Cao-Litao Qin, Huan-Lei Liu, Jia-Xu Li, Wan-Ying Chen, Jin-Ying Zhou, Chun-Mei Jiao, Yi Ma, Meng-Bo Qiu, Hua-Song Ai, Jian Zheng, Yun-Long Wang*, Mien-Chie Hung*, Xiang-Bo Wan*, Xin-Juan Fan*. Ubiquitin-induced RNF168 condensation promotes DNA double-strand break repair. Proc. Nat. Acad. Sci. 2024, 121, e2322972121.