%0 Journal Article %A 褚青青1 %A 肖涵1 %A 吕勇1,杨志武1 %T 基于多重分形理论与神经网络的齿轮故障诊断 %D 2015 %R %J 振动与冲击 %P 15-18 %V 34 %N 21 %X 针对齿轮故障振动信号具有多重分形特征,提出多重分形与神经网络相结合的机械故障诊断方法。采用多重分形理论计算出振动时间序列的多分形谱f(α)和广义分形维数D(q),并将多分形谱能和广义分形维数谱能作为特征量,构成二维特征向量。将该特征向量作为概率神经网络的输入参量,对采自齿轮故障台的振动信号进行故障分类。作为对比,将关联维数作为特征量输入同样参数的概率神经网络并进行故障识别,结果表明,所提出的方法具有更高的识别率。
%U https://jvs.sjtu.edu.cn/CN/abstract/article_5183.shtml