%0 Journal Article %A 盛俊杰 %A 王九龙 %A 李树勇 %A 文勇 %T 基于孪生神经网络的楔形环连接结构预紧状态辨识 %D 2024 %R %J 振动与冲击 %P 162-168 %V 43 %N 8 %X 楔形环连接结构由于其连接简单可靠、同时兼具节省空间及减重的优势,常被应用于鱼雷、航天飞行器等武器装备。针对楔形环连接结构预紧状态辨识方面存在的机理模型复杂、样本量小且类别不平衡的问题,提出了一种基于孪生神经网络模型的预紧状态辨识方法。为提高模型训练效率和效果,首先利用时频处理技术进行孪生神经网络模型特征增强,基于增强特征建立了3层孪生神经网络分类模型,实现楔形环预紧状态宏观分类。同时,为指导楔形环精密装配,通过特征可视化技术,深入分析了孪生神经网络训练过程特征聚类效果,并基于二维特征建立了预紧状态定量表征模型,引入目标状态聚类中心与接受域参量,用于实现楔形环连接结构预紧状态定量评估。通过试验验证了所提方法的有效性,该方法可为楔形环连接结构定量辨识提供新的技术途径和思路,具有一定工程应用价值。 %U https://jvs.sjtu.edu.cn/CN/abstract/article_13264.shtml